making the chain multi-modal. now we accept audio and image uploads and can run inference

This commit is contained in:
vinodkiran 2023-12-09 22:07:16 +05:30
parent 32575828cd
commit 1b308a8b54
4 changed files with 96 additions and 38 deletions

View File

@ -7,6 +7,7 @@ class OpenAIAudioWhisper implements INode {
description: string
type: string
icon: string
badge: string
category: string
baseClasses: string[]
inputs: INodeParams[]
@ -18,6 +19,7 @@ class OpenAIAudioWhisper implements INode {
this.type = 'OpenAIWhisper'
this.description = 'Speech to text using OpenAI Whisper API'
this.icon = 'audio.svg'
this.badge = 'BETA'
this.category = 'MultiModal'
this.baseClasses = [this.type]
this.inputs = [
@ -27,14 +29,15 @@ class OpenAIAudioWhisper implements INode {
type: 'options',
options: [
{
label: 'transcription',
label: 'Transcription',
name: 'transcription'
},
{
label: 'translation',
label: 'Translation',
name: 'translation'
}
]
],
default: 'transcription'
},
{
label: 'Accepted Upload Types',
@ -54,7 +57,9 @@ class OpenAIAudioWhisper implements INode {
}
async init(nodeData: INodeData): Promise<any> {
return {}
const purpose = nodeData.inputs?.purpose as string
return { purpose }
}
}

View File

@ -132,7 +132,7 @@ class OpenAIVisionChain_Chains implements INode {
this.outputs = [
{
label: 'Open AI MultiModal Chain',
name: 'OpenAIMultiModalChain',
name: 'openAIMultiModalChain',
baseClasses: [this.type, ...getBaseClasses(VLLMChain)]
},
{
@ -154,6 +154,8 @@ class OpenAIVisionChain_Chains implements INode {
const modelName = nodeData.inputs?.modelName as string
const maxTokens = nodeData.inputs?.maxTokens as string
const topP = nodeData.inputs?.topP as string
const whisperConfig = nodeData.inputs?.audioInput
const fields: OpenAIVisionChainInput = {
openAIApiKey: openAIApiKey,
imageResolution: imageResolution,
@ -164,6 +166,8 @@ class OpenAIVisionChain_Chains implements INode {
if (temperature) fields.temperature = parseFloat(temperature)
if (maxTokens) fields.maxTokens = parseInt(maxTokens, 10)
if (topP) fields.topP = parseFloat(topP)
if (whisperConfig) fields.whisperConfig = whisperConfig
if (output === this.name) {
const chain = new VLLMChain({
...fields,

View File

@ -21,6 +21,7 @@ export interface OpenAIVisionChainInput extends ChainInputs {
modelName?: string
maxTokens?: number
topP?: number
whisperConfig?: any
}
/**
@ -48,6 +49,8 @@ export class VLLMChain extends BaseChain implements OpenAIVisionChainInput {
maxTokens?: number
topP?: number
whisperConfig?: any
constructor(fields: OpenAIVisionChainInput) {
super(fields)
this.throwError = fields?.throwError ?? false
@ -59,6 +62,7 @@ export class VLLMChain extends BaseChain implements OpenAIVisionChainInput {
this.maxTokens = fields?.maxTokens
this.topP = fields?.topP
this.imageUrls = fields?.imageUrls ?? []
this.whisperConfig = fields?.whisperConfig ?? {}
if (!this.openAIApiKey) {
throw new Error('OpenAI API key not found')
}
@ -92,15 +96,44 @@ export class VLLMChain extends BaseChain implements OpenAIVisionChainInput {
type: 'text',
text: userInput
})
if (this.whisperConfig && this.imageUrls && this.imageUrls.length > 0) {
const audioUploads = this.getAudioUploads(this.imageUrls)
for (const url of audioUploads) {
const filePath = path.join(getUserHome(), '.flowise', 'gptvision', url.data, url.name)
// as the image is stored in the server, read the file and convert it to base64
const audio_file = fs.createReadStream(filePath)
if (this.whisperConfig.purpose === 'transcription') {
const transcription = await this.client.audio.transcriptions.create({
file: audio_file,
model: 'whisper-1'
})
userRole.content.push({
type: 'text',
text: transcription.text
})
} else if (this.whisperConfig.purpose === 'translation') {
const translation = await this.client.audio.translations.create({
file: audio_file,
model: 'whisper-1'
})
userRole.content.push({
type: 'text',
text: translation.text
})
}
}
}
if (this.imageUrls && this.imageUrls.length > 0) {
this.imageUrls.forEach((imageUrl: any) => {
let bf = imageUrl?.data
if (imageUrl.type == 'stored-file') {
const filePath = path.join(getUserHome(), '.flowise', 'gptvision', imageUrl.data, imageUrl.name)
const imageUploads = this.getImageUploads(this.imageUrls)
for (const url of imageUploads) {
let bf = url.data
if (url.type == 'stored-file') {
const filePath = path.join(getUserHome(), '.flowise', 'gptvision', url.data, url.name)
// as the image is stored in the server, read the file and convert it to base64
const contents = fs.readFileSync(filePath)
bf = 'data:' + imageUrl.mime + ';base64,' + contents.toString('base64')
bf = 'data:' + url.mime + ';base64,' + contents.toString('base64')
}
userRole.content.push({
type: 'image_url',
@ -109,7 +142,7 @@ export class VLLMChain extends BaseChain implements OpenAIVisionChainInput {
detail: this.imageResolution
}
})
})
}
}
vRequest.messages.push(userRole)
if (this.prompt && this.prompt instanceof ChatPromptTemplate) {
@ -146,6 +179,14 @@ export class VLLMChain extends BaseChain implements OpenAIVisionChainInput {
}
}
getAudioUploads = (urls: any[]) => {
return urls.filter((url: any) => url.mime.startsWith('audio/'))
}
getImageUploads = (urls: any[]) => {
return urls.filter((url: any) => url.mime.startsWith('image/'))
}
_chainType() {
return 'vision_chain'
}

View File

@ -14,7 +14,6 @@ import {
Box,
Button,
Card,
CardActions,
CardMedia,
Chip,
CircularProgress,
@ -48,7 +47,6 @@ import { baseURL, maxScroll } from 'store/constant'
import robotPNG from 'assets/images/robot.png'
import userPNG from 'assets/images/account.png'
import { isValidURL, removeDuplicateURL, setLocalStorageChatflow } from 'utils/genericHelper'
import DeleteIcon from '@mui/icons-material/Delete'
export const ChatMessage = ({ open, chatflowid, isDialog }) => {
const theme = useTheme()
@ -628,15 +626,25 @@ export const ChatMessage = ({ open, chatflowid, isDialog }) => {
{message.fileUploads &&
message.fileUploads.map((item, index) => {
return (
<Card key={index} sx={{ maxWidth: 128, margin: 5 }}>
<CardMedia
component='img'
image={item.data}
sx={{ height: 64 }}
alt={'preview'}
style={messageImageStyle}
/>
</Card>
<>
{item.mime.startsWith('image/') ? (
<Card key={index} sx={{ maxWidth: 128, margin: 5 }}>
<CardMedia
component='img'
image={item.data}
sx={{ height: 64 }}
alt={'preview'}
style={messageImageStyle}
/>
</Card>
) : (
// eslint-disable-next-line jsx-a11y/media-has-caption
<audio controls='controls'>
Your browser does not support the &lt;audio&gt; tag.
<source src={item.data} type={item.mime} />
</audio>
)}
</>
)
})}
{message.sourceDocuments && (
@ -738,23 +746,23 @@ export const ChatMessage = ({ open, chatflowid, isDialog }) => {
<Grid container spacing={2} sx={{ p: 1, mt: '5px', ml: '1px' }}>
{previews.map((item, index) => (
<Grid item xs={12} sm={6} md={3} key={index}>
<Card variant='outlined' sx={{ maxWidth: 128 }}>
<CardMedia
component='img'
image={item.preview}
sx={{ height: 64 }}
alt={`preview ${index}`}
style={previewStyle}
/>
<CardActions className='center' sx={{ p: 0, m: 0 }}>
<Button
startIcon={<DeleteIcon />}
onClick={() => handleDeletePreview(item)}
size='small'
variant='text'
{item.mime.startsWith('image/') ? (
<Card key={index} sx={{ maxWidth: 128, margin: 5 }}>
<CardMedia
component='img'
image={item.data}
sx={{ height: 64 }}
alt={'preview'}
style={previewStyle}
/>
</CardActions>
</Card>
</Card>
) : (
// eslint-disable-next-line jsx-a11y/media-has-caption
<audio controls='controls'>
Your browser does not support the &lt;audio&gt; tag.
<source src={item.data} type={item.mime} />
</audio>
)}
</Grid>
))}
</Grid>