add subquery engine
This commit is contained in:
parent
3e59b9b658
commit
21c47d8049
|
|
@ -41,6 +41,14 @@ class ChatOpenAI_LlamaIndex_LLMs implements INode {
|
|||
label: 'gpt-4',
|
||||
name: 'gpt-4'
|
||||
},
|
||||
{
|
||||
label: 'gpt-4-turbo-preview',
|
||||
name: 'gpt-4-turbo-preview'
|
||||
},
|
||||
{
|
||||
label: 'gpt-4-0125-preview',
|
||||
name: 'gpt-4-0125-preview'
|
||||
},
|
||||
{
|
||||
label: 'gpt-4-1106-preview',
|
||||
name: 'gpt-4-1106-preview'
|
||||
|
|
|
|||
|
|
@ -32,6 +32,27 @@ class OpenAIEmbedding_LlamaIndex_Embeddings implements INode {
|
|||
credentialNames: ['openAIApi']
|
||||
}
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Model Name',
|
||||
name: 'modelName',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
label: 'text-embedding-3-large',
|
||||
name: 'text-embedding-3-large'
|
||||
},
|
||||
{
|
||||
label: 'text-embedding-3-small',
|
||||
name: 'text-embedding-3-small'
|
||||
},
|
||||
{
|
||||
label: 'text-embedding-ada-002',
|
||||
name: 'text-embedding-ada-002'
|
||||
}
|
||||
],
|
||||
default: 'text-embedding-ada-002',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Timeout',
|
||||
name: 'timeout',
|
||||
|
|
@ -51,12 +72,14 @@ class OpenAIEmbedding_LlamaIndex_Embeddings implements INode {
|
|||
|
||||
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
||||
const timeout = nodeData.inputs?.timeout as string
|
||||
const modelName = nodeData.inputs?.modelName as string
|
||||
|
||||
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
||||
const openAIApiKey = getCredentialParam('openAIApiKey', credentialData, nodeData)
|
||||
|
||||
const obj: Partial<OpenAIEmbedding> = {
|
||||
apiKey: openAIApiKey
|
||||
apiKey: openAIApiKey,
|
||||
model: modelName
|
||||
}
|
||||
if (timeout) obj.timeout = parseInt(timeout, 10)
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,193 @@
|
|||
import { flatten } from 'lodash'
|
||||
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import {
|
||||
TreeSummarize,
|
||||
SimpleResponseBuilder,
|
||||
Refine,
|
||||
BaseEmbedding,
|
||||
ResponseSynthesizer,
|
||||
CompactAndRefine,
|
||||
QueryEngineTool,
|
||||
LLMQuestionGenerator,
|
||||
SubQuestionQueryEngine,
|
||||
BaseNode,
|
||||
Metadata,
|
||||
serviceContextFromDefaults
|
||||
} from 'llamaindex'
|
||||
import { reformatSourceDocuments } from '../EngineUtils'
|
||||
|
||||
class SubQuestionQueryEngine_LlamaIndex implements INode {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
tags: string[]
|
||||
inputs: INodeParams[]
|
||||
outputs: INodeOutputsValue[]
|
||||
sessionId?: string
|
||||
|
||||
constructor(fields?: { sessionId?: string }) {
|
||||
this.label = 'Sub Question Query Engine'
|
||||
this.name = 'subQuestionQueryEngine'
|
||||
this.version = 1.0
|
||||
this.type = 'SubQuestionQueryEngine'
|
||||
this.icon = 'subQueryEngine.svg'
|
||||
this.category = 'Engine'
|
||||
this.description =
|
||||
'Breaks complex query into sub questions for each relevant data source, then gather all the intermediate reponses and synthesizes a final response'
|
||||
this.baseClasses = [this.type]
|
||||
this.tags = ['LlamaIndex']
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'QueryEngine Tools',
|
||||
name: 'queryEngineTools',
|
||||
type: 'QueryEngineTool',
|
||||
list: true
|
||||
},
|
||||
{
|
||||
label: 'Chat Model',
|
||||
name: 'model',
|
||||
type: 'BaseChatModel_LlamaIndex'
|
||||
},
|
||||
{
|
||||
label: 'Embeddings',
|
||||
name: 'embeddings',
|
||||
type: 'BaseEmbedding_LlamaIndex'
|
||||
},
|
||||
{
|
||||
label: 'Response Synthesizer',
|
||||
name: 'responseSynthesizer',
|
||||
type: 'ResponseSynthesizer',
|
||||
description:
|
||||
'ResponseSynthesizer is responsible for sending the query, nodes, and prompt templates to the LLM to generate a response. See <a target="_blank" href="https://ts.llamaindex.ai/modules/low_level/response_synthesizer">more</a>',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Return Source Documents',
|
||||
name: 'returnSourceDocuments',
|
||||
type: 'boolean',
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.sessionId = fields?.sessionId
|
||||
}
|
||||
|
||||
async init(): Promise<any> {
|
||||
return null
|
||||
}
|
||||
|
||||
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | object> {
|
||||
const returnSourceDocuments = nodeData.inputs?.returnSourceDocuments as boolean
|
||||
const embeddings = nodeData.inputs?.embeddings as BaseEmbedding
|
||||
const model = nodeData.inputs?.model
|
||||
|
||||
const serviceContext = serviceContextFromDefaults({
|
||||
llm: model,
|
||||
embedModel: embeddings
|
||||
})
|
||||
|
||||
let queryEngineTools = nodeData.inputs?.queryEngineTools as QueryEngineTool[]
|
||||
queryEngineTools = flatten(queryEngineTools)
|
||||
|
||||
let queryEngine = SubQuestionQueryEngine.fromDefaults({
|
||||
serviceContext,
|
||||
queryEngineTools,
|
||||
questionGen: new LLMQuestionGenerator({ llm: model })
|
||||
})
|
||||
|
||||
const responseSynthesizerObj = nodeData.inputs?.responseSynthesizer
|
||||
if (responseSynthesizerObj) {
|
||||
if (responseSynthesizerObj.type === 'TreeSummarize') {
|
||||
const responseSynthesizer = new ResponseSynthesizer({
|
||||
responseBuilder: new TreeSummarize(serviceContext, responseSynthesizerObj.textQAPromptTemplate),
|
||||
serviceContext
|
||||
})
|
||||
queryEngine = SubQuestionQueryEngine.fromDefaults({
|
||||
responseSynthesizer,
|
||||
serviceContext,
|
||||
queryEngineTools,
|
||||
questionGen: new LLMQuestionGenerator({ llm: model })
|
||||
})
|
||||
} else if (responseSynthesizerObj.type === 'CompactAndRefine') {
|
||||
const responseSynthesizer = new ResponseSynthesizer({
|
||||
responseBuilder: new CompactAndRefine(
|
||||
serviceContext,
|
||||
responseSynthesizerObj.textQAPromptTemplate,
|
||||
responseSynthesizerObj.refinePromptTemplate
|
||||
),
|
||||
serviceContext
|
||||
})
|
||||
queryEngine = SubQuestionQueryEngine.fromDefaults({
|
||||
responseSynthesizer,
|
||||
serviceContext,
|
||||
queryEngineTools,
|
||||
questionGen: new LLMQuestionGenerator({ llm: model })
|
||||
})
|
||||
} else if (responseSynthesizerObj.type === 'Refine') {
|
||||
const responseSynthesizer = new ResponseSynthesizer({
|
||||
responseBuilder: new Refine(
|
||||
serviceContext,
|
||||
responseSynthesizerObj.textQAPromptTemplate,
|
||||
responseSynthesizerObj.refinePromptTemplate
|
||||
),
|
||||
serviceContext
|
||||
})
|
||||
queryEngine = SubQuestionQueryEngine.fromDefaults({
|
||||
responseSynthesizer,
|
||||
serviceContext,
|
||||
queryEngineTools,
|
||||
questionGen: new LLMQuestionGenerator({ llm: model })
|
||||
})
|
||||
} else if (responseSynthesizerObj.type === 'SimpleResponseBuilder') {
|
||||
const responseSynthesizer = new ResponseSynthesizer({
|
||||
responseBuilder: new SimpleResponseBuilder(serviceContext),
|
||||
serviceContext
|
||||
})
|
||||
queryEngine = SubQuestionQueryEngine.fromDefaults({
|
||||
responseSynthesizer,
|
||||
serviceContext,
|
||||
queryEngineTools,
|
||||
questionGen: new LLMQuestionGenerator({ llm: model })
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
let text = ''
|
||||
let sourceDocuments: ICommonObject[] = []
|
||||
let sourceNodes: BaseNode<Metadata>[] = []
|
||||
let isStreamingStarted = false
|
||||
const isStreamingEnabled = options.socketIO && options.socketIOClientId
|
||||
|
||||
if (isStreamingEnabled) {
|
||||
const stream = await queryEngine.query({ query: input, stream: true })
|
||||
for await (const chunk of stream) {
|
||||
text += chunk.response
|
||||
if (chunk.sourceNodes) sourceNodes = chunk.sourceNodes
|
||||
if (!isStreamingStarted) {
|
||||
isStreamingStarted = true
|
||||
options.socketIO.to(options.socketIOClientId).emit('start', chunk.response)
|
||||
}
|
||||
|
||||
options.socketIO.to(options.socketIOClientId).emit('token', chunk.response)
|
||||
}
|
||||
|
||||
if (returnSourceDocuments) {
|
||||
sourceDocuments = reformatSourceDocuments(sourceNodes)
|
||||
options.socketIO.to(options.socketIOClientId).emit('sourceDocuments', sourceDocuments)
|
||||
}
|
||||
} else {
|
||||
const response = await queryEngine.query({ query: input })
|
||||
text = response?.response
|
||||
sourceDocuments = reformatSourceDocuments(response?.sourceNodes ?? [])
|
||||
}
|
||||
|
||||
if (returnSourceDocuments) return { text, sourceDocuments }
|
||||
else return { text }
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: SubQuestionQueryEngine_LlamaIndex }
|
||||
|
|
@ -0,0 +1 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" class="icon icon-tabler icon-tabler-filter-question" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-linejoin="round"><path stroke="none" d="M0 0h24v24H0z" fill="none"/><path d="M15 19l-6 2v-8.5l-4.48 -4.928a2 2 0 0 1 -.52 -1.345v-2.227h16v2.172a2 2 0 0 1 -.586 1.414l-4.414 4.414" /><path d="M19 22v.01" /><path d="M19 19a2.003 2.003 0 0 0 .914 -3.782a1.98 1.98 0 0 0 -2.414 .483" /></svg>
|
||||
|
After Width: | Height: | Size: 506 B |
|
|
@ -0,0 +1,68 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { VectorStoreIndex } from 'llamaindex'
|
||||
|
||||
class QueryEngine_Tools implements INode {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
tags: string[]
|
||||
baseClasses: string[]
|
||||
inputs?: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'QueryEngine Tool'
|
||||
this.name = 'queryEngineToolLlamaIndex'
|
||||
this.version = 1.0
|
||||
this.type = 'QueryEngineTool'
|
||||
this.icon = 'queryEngineTool.svg'
|
||||
this.category = 'Tools'
|
||||
this.tags = ['LlamaIndex']
|
||||
this.description = 'Tool used to invoke query engine'
|
||||
this.baseClasses = [this.type]
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Vector Store Index',
|
||||
name: 'vectorStoreIndex',
|
||||
type: 'VectorStoreIndex'
|
||||
},
|
||||
{
|
||||
label: 'Tool Name',
|
||||
name: 'toolName',
|
||||
type: 'string',
|
||||
description: 'Tool name must be small capital letter with underscore. Ex: my_tool'
|
||||
},
|
||||
{
|
||||
label: 'Tool Description',
|
||||
name: 'toolDesc',
|
||||
type: 'string',
|
||||
rows: 4
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const vectorStoreIndex = nodeData.inputs?.vectorStoreIndex as VectorStoreIndex
|
||||
const toolName = nodeData.inputs?.toolName as string
|
||||
const toolDesc = nodeData.inputs?.toolDesc as string
|
||||
const queryEngineTool = {
|
||||
queryEngine: vectorStoreIndex.asQueryEngine({
|
||||
preFilters: {
|
||||
...(vectorStoreIndex as any).metadatafilter
|
||||
}
|
||||
}),
|
||||
metadata: {
|
||||
name: toolName,
|
||||
description: toolDesc
|
||||
},
|
||||
vectorStoreIndex
|
||||
}
|
||||
|
||||
return queryEngineTool
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: QueryEngine_Tools }
|
||||
|
|
@ -0,0 +1 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" class="icon icon-tabler icon-tabler-brand-google-big-query" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-linejoin="round"><path stroke="none" d="M0 0h24v24H0z" fill="none"/><path d="M17.73 19.875a2.225 2.225 0 0 1 -1.948 1.125h-7.283a2.222 2.222 0 0 1 -1.947 -1.158l-4.272 -6.75a2.269 2.269 0 0 1 0 -2.184l4.272 -6.75a2.225 2.225 0 0 1 1.946 -1.158h7.285c.809 0 1.554 .443 1.947 1.158l3.98 6.75a2.33 2.33 0 0 1 0 2.25l-3.98 6.75v-.033z" /><path d="M11.5 11.5m-3.5 0a3.5 3.5 0 1 0 7 0a3.5 3.5 0 1 0 -7 0" /><path d="M14 14l2 2" /></svg>
|
||||
|
After Width: | Height: | Size: 654 B |
|
|
@ -13,7 +13,7 @@ import {
|
|||
import { FetchResponse, Index, Pinecone, ScoredPineconeRecord } from '@pinecone-database/pinecone'
|
||||
import { flatten } from 'lodash'
|
||||
import { Document as LCDocument } from 'langchain/document'
|
||||
import { ICommonObject, INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { flattenObject, getCredentialData, getCredentialParam } from '../../../src/utils'
|
||||
|
||||
class PineconeLlamaIndex_VectorStores implements INode {
|
||||
|
|
@ -28,6 +28,7 @@ class PineconeLlamaIndex_VectorStores implements INode {
|
|||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
credential: INodeParams
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Pinecone'
|
||||
|
|
@ -93,6 +94,18 @@ class PineconeLlamaIndex_VectorStores implements INode {
|
|||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'Pinecone Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'Pinecone Vector Store Index',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, 'VectorStoreIndex']
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
//@ts-ignore
|
||||
|
|
@ -155,8 +168,10 @@ class PineconeLlamaIndex_VectorStores implements INode {
|
|||
}
|
||||
|
||||
if (pineconeNamespace) obj.namespace = pineconeNamespace
|
||||
|
||||
let metadatafilter = {}
|
||||
if (pineconeMetadataFilter) {
|
||||
const metadatafilter = typeof pineconeMetadataFilter === 'object' ? pineconeMetadataFilter : JSON.parse(pineconeMetadataFilter)
|
||||
metadatafilter = typeof pineconeMetadataFilter === 'object' ? pineconeMetadataFilter : JSON.parse(pineconeMetadataFilter)
|
||||
obj.queryFilter = metadatafilter
|
||||
}
|
||||
|
||||
|
|
@ -171,11 +186,21 @@ class PineconeLlamaIndex_VectorStores implements INode {
|
|||
serviceContext
|
||||
})
|
||||
|
||||
const retriever = index.asRetriever()
|
||||
retriever.similarityTopK = k
|
||||
;(retriever as any).serviceContext = serviceContext
|
||||
const output = nodeData.outputs?.output as string
|
||||
|
||||
return retriever
|
||||
if (output === 'retriever') {
|
||||
const retriever = index.asRetriever()
|
||||
retriever.similarityTopK = k
|
||||
;(retriever as any).serviceContext = serviceContext
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(index as any).k = k
|
||||
if (metadatafilter) {
|
||||
;(index as any).metadatafilter = metadatafilter
|
||||
}
|
||||
return index
|
||||
}
|
||||
return index
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -63,6 +63,18 @@ class SimpleStoreUpsert_LlamaIndex_VectorStores implements INode {
|
|||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'SimpleStore Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'SimpleStore Vector Store Index',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, 'VectorStoreIndex']
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
//@ts-ignore
|
||||
|
|
@ -114,10 +126,19 @@ class SimpleStoreUpsert_LlamaIndex_VectorStores implements INode {
|
|||
const storageContext = await storageContextFromDefaults({ persistDir: filePath })
|
||||
|
||||
const index = await VectorStoreIndex.init({ storageContext, serviceContext })
|
||||
const retriever = index.asRetriever()
|
||||
retriever.similarityTopK = k
|
||||
|
||||
return retriever
|
||||
const output = nodeData.outputs?.output as string
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = index.asRetriever()
|
||||
retriever.similarityTopK = k
|
||||
;(retriever as any).serviceContext = serviceContext
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(index as any).k = k
|
||||
return index
|
||||
}
|
||||
return index
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -181,6 +181,28 @@
|
|||
"credentialNames": ["openAIApi"],
|
||||
"id": "openAIEmbedding_LlamaIndex_0-input-credential-credential"
|
||||
},
|
||||
{
|
||||
"label": "Model Name",
|
||||
"name": "modelName",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "text-embedding-3-large",
|
||||
"name": "text-embedding-3-large"
|
||||
},
|
||||
{
|
||||
"label": "text-embedding-3-small",
|
||||
"name": "text-embedding-3-small"
|
||||
},
|
||||
{
|
||||
"label": "text-embedding-ada-002",
|
||||
"name": "text-embedding-ada-002"
|
||||
}
|
||||
],
|
||||
"default": "text-embedding-ada-002",
|
||||
"optional": true,
|
||||
"id": "openAIEmbedding_LlamaIndex_0-input-modelName-options"
|
||||
},
|
||||
{
|
||||
"label": "Timeout",
|
||||
"name": "timeout",
|
||||
|
|
@ -315,13 +337,29 @@
|
|||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "pineconeLlamaIndex_0-output-pineconeLlamaIndex-Pinecone|VectorIndexRetriever",
|
||||
"name": "pineconeLlamaIndex",
|
||||
"label": "Pinecone",
|
||||
"type": "Pinecone | VectorIndexRetriever"
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "pineconeLlamaIndex_0-output-retriever-Pinecone|VectorIndexRetriever",
|
||||
"name": "retriever",
|
||||
"label": "Pinecone Retriever",
|
||||
"type": "Pinecone | VectorIndexRetriever"
|
||||
},
|
||||
{
|
||||
"id": "pineconeLlamaIndex_0-output-retriever-Pinecone|VectorStoreIndex",
|
||||
"name": "vectorStore",
|
||||
"label": "Pinecone Vector Store Index",
|
||||
"type": "Pinecone | VectorStoreIndex"
|
||||
}
|
||||
],
|
||||
"default": "retriever"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"outputs": {
|
||||
"output": "retriever"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
|
|
@ -367,6 +405,14 @@
|
|||
"label": "gpt-4",
|
||||
"name": "gpt-4"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-turbo-preview",
|
||||
"name": "gpt-4-turbo-preview"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-0125-preview",
|
||||
"name": "gpt-4-0125-preview"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-1106-preview",
|
||||
"name": "gpt-4-1106-preview"
|
||||
|
|
@ -672,6 +718,14 @@
|
|||
"label": "gpt-4",
|
||||
"name": "gpt-4"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-turbo-preview",
|
||||
"name": "gpt-4-turbo-preview"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-0125-preview",
|
||||
"name": "gpt-4-0125-preview"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-1106-preview",
|
||||
"name": "gpt-4-1106-preview"
|
||||
|
|
|
|||
|
|
@ -163,13 +163,29 @@
|
|||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "pineconeLlamaIndex_0-output-pineconeLlamaIndex-Pinecone|VectorIndexRetriever",
|
||||
"name": "pineconeLlamaIndex",
|
||||
"label": "Pinecone",
|
||||
"type": "Pinecone | VectorIndexRetriever"
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "pineconeLlamaIndex_0-output-retriever-Pinecone|VectorIndexRetriever",
|
||||
"name": "retriever",
|
||||
"label": "Pinecone Retriever",
|
||||
"type": "Pinecone | VectorIndexRetriever"
|
||||
},
|
||||
{
|
||||
"id": "pineconeLlamaIndex_0-output-retriever-Pinecone|VectorStoreIndex",
|
||||
"name": "vectorStore",
|
||||
"label": "Pinecone Vector Store Index",
|
||||
"type": "Pinecone | VectorStoreIndex"
|
||||
}
|
||||
],
|
||||
"default": "retriever"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"outputs": {
|
||||
"output": "retriever"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
|
|
@ -206,6 +222,28 @@
|
|||
"credentialNames": ["openAIApi"],
|
||||
"id": "openAIEmbedding_LlamaIndex_0-input-credential-credential"
|
||||
},
|
||||
{
|
||||
"label": "Model Name",
|
||||
"name": "modelName",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "text-embedding-3-large",
|
||||
"name": "text-embedding-3-large"
|
||||
},
|
||||
{
|
||||
"label": "text-embedding-3-small",
|
||||
"name": "text-embedding-3-small"
|
||||
},
|
||||
{
|
||||
"label": "text-embedding-ada-002",
|
||||
"name": "text-embedding-ada-002"
|
||||
}
|
||||
],
|
||||
"default": "text-embedding-ada-002",
|
||||
"optional": true,
|
||||
"id": "openAIEmbedding_LlamaIndex_0-input-modelName-options"
|
||||
},
|
||||
{
|
||||
"label": "Timeout",
|
||||
"name": "timeout",
|
||||
|
|
|
|||
|
|
@ -844,7 +844,7 @@ export const isFlowValidForStream = (reactFlowNodes: IReactFlowNode[], endingNod
|
|||
const whitelistAgents = ['openAIFunctionAgent', 'csvAgent', 'airtableAgent', 'conversationalRetrievalAgent']
|
||||
isValidChainOrAgent = whitelistAgents.includes(endingNodeData.name)
|
||||
} else if (endingNodeData.category === 'Engine') {
|
||||
const whitelistEngine = ['contextChatEngine', 'simpleChatEngine', 'queryEngine']
|
||||
const whitelistEngine = ['contextChatEngine', 'simpleChatEngine', 'queryEngine', 'subQuestionQueryEngine']
|
||||
isValidChainOrAgent = whitelistEngine.includes(endingNodeData.name)
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue