Merge branch 'main' into feature/LlamaIndex

# Conflicts:
#	.github/workflows/autoSyncMergedPullRequest.yml
This commit is contained in:
Henry 2024-01-25 19:16:20 +00:00
commit 2d6dcb3e82
9 changed files with 401 additions and 468 deletions

View File

@ -1,6 +1,6 @@
name: autoSyncMergedPullRequest name: autoSyncMergedPullRequest
on: on:
pull_request: pull_request_target:
types: types:
- closed - closed
branches: ['main'] branches: ['main']

View File

@ -1,6 +1,6 @@
{ {
"name": "flowise", "name": "flowise",
"version": "1.4.10", "version": "1.4.11",
"private": true, "private": true,
"homepage": "https://flowiseai.com", "homepage": "https://flowiseai.com",
"workspaces": [ "workspaces": [

View File

@ -18,7 +18,7 @@ class AzureOpenAI_LLMs implements INode {
constructor() { constructor() {
this.label = 'Azure OpenAI' this.label = 'Azure OpenAI'
this.name = 'azureOpenAI' this.name = 'azureOpenAI'
this.version = 2.0 this.version = 2.1
this.type = 'AzureOpenAI' this.type = 'AzureOpenAI'
this.icon = 'Azure.svg' this.icon = 'Azure.svg'
this.category = 'LLMs' this.category = 'LLMs'
@ -89,6 +89,14 @@ class AzureOpenAI_LLMs implements INode {
{ {
label: 'gpt-35-turbo', label: 'gpt-35-turbo',
name: 'gpt-35-turbo' name: 'gpt-35-turbo'
},
{
label: 'gpt-4',
name: 'gpt-4'
},
{
label: 'gpt-4-32k',
name: 'gpt-4-32k'
} }
], ],
default: 'text-davinci-003', default: 'text-davinci-003',

View File

@ -1,6 +1,6 @@
{ {
"name": "flowise-components", "name": "flowise-components",
"version": "1.5.1", "version": "1.5.2",
"description": "Flowiseai Components", "description": "Flowiseai Components",
"main": "dist/src/index", "main": "dist/src/index",
"types": "dist/src/index.d.ts", "types": "dist/src/index.d.ts",

View File

@ -1,461 +0,0 @@
{
"description": "A simple LLM chain that uses Vectara to enable conversations with uploaded files",
"nodes": [
{
"width": 300,
"height": 574,
"id": "chatOpenAI_0",
"position": {
"x": 581.1784360612766,
"y": -229.3906666911439
},
"type": "customNode",
"data": {
"id": "chatOpenAI_0",
"label": "ChatOpenAI",
"version": 2,
"name": "chatOpenAI",
"type": "ChatOpenAI",
"baseClasses": ["ChatOpenAI", "BaseChatModel", "BaseLanguageModel", "Runnable"],
"category": "Chat Models",
"description": "Wrapper around OpenAI large language models that use the Chat endpoint",
"inputParams": [
{
"label": "Connect Credential",
"name": "credential",
"type": "credential",
"credentialNames": ["openAIApi"],
"id": "chatOpenAI_0-input-credential-credential"
},
{
"label": "Model Name",
"name": "modelName",
"type": "options",
"options": [
{
"label": "gpt-4",
"name": "gpt-4"
},
{
"label": "gpt-4-0613",
"name": "gpt-4-0613"
},
{
"label": "gpt-4-32k",
"name": "gpt-4-32k"
},
{
"label": "gpt-4-32k-0613",
"name": "gpt-4-32k-0613"
},
{
"label": "gpt-3.5-turbo",
"name": "gpt-3.5-turbo"
},
{
"label": "gpt-3.5-turbo-0613",
"name": "gpt-3.5-turbo-0613"
},
{
"label": "gpt-3.5-turbo-16k",
"name": "gpt-3.5-turbo-16k"
},
{
"label": "gpt-3.5-turbo-16k-0613",
"name": "gpt-3.5-turbo-16k-0613"
}
],
"default": "gpt-3.5-turbo",
"optional": true,
"id": "chatOpenAI_0-input-modelName-options"
},
{
"label": "Temperature",
"name": "temperature",
"type": "number",
"step": 0.1,
"default": 0.9,
"optional": true,
"id": "chatOpenAI_0-input-temperature-number"
},
{
"label": "Max Tokens",
"name": "maxTokens",
"type": "number",
"step": 1,
"optional": true,
"additionalParams": true,
"id": "chatOpenAI_0-input-maxTokens-number"
},
{
"label": "Top Probability",
"name": "topP",
"type": "number",
"step": 0.1,
"optional": true,
"additionalParams": true,
"id": "chatOpenAI_0-input-topP-number"
},
{
"label": "Frequency Penalty",
"name": "frequencyPenalty",
"type": "number",
"step": 0.1,
"optional": true,
"additionalParams": true,
"id": "chatOpenAI_0-input-frequencyPenalty-number"
},
{
"label": "Presence Penalty",
"name": "presencePenalty",
"type": "number",
"step": 0.1,
"optional": true,
"additionalParams": true,
"id": "chatOpenAI_0-input-presencePenalty-number"
},
{
"label": "Timeout",
"name": "timeout",
"type": "number",
"step": 1,
"optional": true,
"additionalParams": true,
"id": "chatOpenAI_0-input-timeout-number"
},
{
"label": "BasePath",
"name": "basepath",
"type": "string",
"optional": true,
"additionalParams": true,
"id": "chatOpenAI_0-input-basepath-string"
},
{
"label": "BaseOptions",
"name": "baseOptions",
"type": "json",
"optional": true,
"additionalParams": true,
"id": "chatOpenAI_0-input-baseOptions-json"
}
],
"inputAnchors": [
{
"label": "Cache",
"name": "cache",
"type": "BaseCache",
"optional": true,
"id": "chatOpenAI_0-input-cache-BaseCache"
}
],
"inputs": {
"modelName": "gpt-3.5-turbo",
"temperature": "0.6",
"maxTokens": "",
"topP": "",
"frequencyPenalty": "",
"presencePenalty": "",
"timeout": "",
"basepath": "",
"baseOptions": ""
},
"outputAnchors": [
{
"id": "chatOpenAI_0-output-chatOpenAI-ChatOpenAI|BaseChatModel|BaseLanguageModel|Runnable",
"name": "chatOpenAI",
"label": "ChatOpenAI",
"type": "ChatOpenAI | BaseChatModel | BaseLanguageModel | Runnable"
}
],
"outputs": {},
"selected": false
},
"selected": false,
"positionAbsolute": {
"x": 581.1784360612766,
"y": -229.3906666911439
},
"dragging": false
},
{
"width": 300,
"height": 480,
"id": "conversationalRetrievalQAChain_0",
"position": {
"x": 979.9713511176517,
"y": 200.09513217589273
},
"type": "customNode",
"data": {
"id": "conversationalRetrievalQAChain_0",
"label": "Conversational Retrieval QA Chain",
"version": 2,
"name": "conversationalRetrievalQAChain",
"type": "ConversationalRetrievalQAChain",
"baseClasses": ["ConversationalRetrievalQAChain", "BaseChain", "Runnable"],
"category": "Chains",
"description": "Document QA - built on RetrievalQAChain to provide a chat history component",
"inputParams": [
{
"label": "Return Source Documents",
"name": "returnSourceDocuments",
"type": "boolean",
"optional": true,
"id": "conversationalRetrievalQAChain_0-input-returnSourceDocuments-boolean"
},
{
"label": "Rephrase Prompt",
"name": "rephrasePrompt",
"type": "string",
"description": "Using previous chat history, rephrase question into a standalone question",
"warning": "Prompt must include input variables: {chat_history} and {question}",
"rows": 4,
"additionalParams": true,
"optional": true,
"default": "Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone Question:",
"id": "conversationalRetrievalQAChain_0-input-rephrasePrompt-string"
},
{
"label": "Response Prompt",
"name": "responsePrompt",
"type": "string",
"description": "Taking the rephrased question, search for answer from the provided context",
"warning": "Prompt must include input variable: {context}",
"rows": 4,
"additionalParams": true,
"optional": true,
"default": "You are a helpful assistant. Using the provided context, answer the user's question to the best of your ability using the resources provided.\nIf there is nothing in the context relevant to the question at hand, just say \"Hmm, I'm not sure.\" Don't try to make up an answer.\n------------\n{context}\n------------\nREMEMBER: If there is no relevant information within the context, just say \"Hmm, I'm not sure.\" Don't try to make up an answer.",
"id": "conversationalRetrievalQAChain_0-input-responsePrompt-string"
}
],
"inputAnchors": [
{
"label": "Chat Model",
"name": "model",
"type": "BaseChatModel",
"id": "conversationalRetrievalQAChain_0-input-model-BaseChatModel"
},
{
"label": "Vector Store Retriever",
"name": "vectorStoreRetriever",
"type": "BaseRetriever",
"id": "conversationalRetrievalQAChain_0-input-vectorStoreRetriever-BaseRetriever"
},
{
"label": "Memory",
"name": "memory",
"type": "BaseMemory",
"optional": true,
"description": "If left empty, a default BufferMemory will be used",
"id": "conversationalRetrievalQAChain_0-input-memory-BaseMemory"
}
],
"inputs": {
"model": "{{chatOpenAI_0.data.instance}}",
"vectorStoreRetriever": "{{vectara_0.data.instance}}",
"memory": "",
"returnSourceDocuments": true,
"rephrasePrompt": "Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone Question:",
"responsePrompt": "You are a helpful assistant. Using the provided context, answer the user's question to the best of your ability using the resources provided.\nIf there is nothing in the context relevant to the question at hand, just say \"Hmm, I'm not sure.\" Don't try to make up an answer.\n------------\n{context}\n------------\nREMEMBER: If there is no relevant information within the context, just say \"Hmm, I'm not sure.\" Don't try to make up an answer."
},
"outputAnchors": [
{
"id": "conversationalRetrievalQAChain_0-output-conversationalRetrievalQAChain-ConversationalRetrievalQAChain|BaseChain|Runnable",
"name": "conversationalRetrievalQAChain",
"label": "ConversationalRetrievalQAChain",
"type": "ConversationalRetrievalQAChain | BaseChain | Runnable"
}
],
"outputs": {},
"selected": false
},
"selected": false,
"dragging": false,
"positionAbsolute": {
"x": 979.9713511176517,
"y": 200.09513217589273
}
},
{
"width": 300,
"height": 535,
"id": "vectara_0",
"position": {
"x": 199.28476672510158,
"y": 177.63260741741112
},
"type": "customNode",
"data": {
"id": "vectara_0",
"label": "Vectara",
"version": 1,
"name": "vectara",
"type": "Vectara",
"baseClasses": ["Vectara", "VectorStoreRetriever", "BaseRetriever"],
"category": "Vector Stores",
"description": "Upsert embedded data and perform similarity search upon query using Vectara, a LLM-powered search-as-a-service",
"inputParams": [
{
"label": "Connect Credential",
"name": "credential",
"type": "credential",
"credentialNames": ["vectaraApi"],
"id": "vectara_0-input-credential-credential"
},
{
"label": "File",
"name": "file",
"description": "File to upload to Vectara. Supported file types: https://docs.vectara.com/docs/api-reference/indexing-apis/file-upload/file-upload-filetypes",
"type": "file",
"optional": true,
"id": "vectara_0-input-file-file"
},
{
"label": "Metadata Filter",
"name": "filter",
"description": "Filter to apply to Vectara metadata. Refer to the <a target=\"_blank\" href=\"https://docs.flowiseai.com/vector-stores/vectara\">documentation</a> on how to use Vectara filters with Flowise.",
"type": "string",
"additionalParams": true,
"optional": true,
"id": "vectara_0-input-filter-string"
},
{
"label": "Sentences Before",
"name": "sentencesBefore",
"description": "Number of sentences to fetch before the matched sentence. Defaults to 2.",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_0-input-sentencesBefore-number"
},
{
"label": "Sentences After",
"name": "sentencesAfter",
"description": "Number of sentences to fetch after the matched sentence. Defaults to 2.",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_0-input-sentencesAfter-number"
},
{
"label": "Lambda",
"name": "lambda",
"description": "Improves retrieval accuracy by adjusting the balance (from 0 to 1) between neural search and keyword-based search factors.",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_0-input-lambda-number"
},
{
"label": "Top K",
"name": "topK",
"description": "Number of top results to fetch. Defaults to 5",
"placeholder": "5",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_0-input-topK-number"
},
{
"label": "MMR K",
"name": "mmrK",
"description": "The number of results to rerank if MMR is enabled.",
"placeholder": "50",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_0-input-mmrK-number"
},
{
"label": "MMR Diversity Bias",
"name": "mmrDiversityBias",
"step": 0.1,
"description": "Diversity Bias parameter for MMR, if enabled. 0.0 means no diversiry bias, 1.0 means maximum diversity bias. Defaults to 0.0 (MMR disabled).",
"placeholder": "0.0",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_0-input-mmrDiversityBias-number"
}
],
"inputAnchors": [
{
"label": "Document",
"name": "document",
"type": "Document",
"list": true,
"optional": true,
"id": "vectara_0-input-document-Document"
}
],
"inputs": {
"document": "",
"filter": "",
"sentencesBefore": "",
"sentencesAfter": "",
"lambda": "",
"topK": "",
"mmrK": "",
"mmrDiversityBias": ""
},
"outputAnchors": [
{
"name": "output",
"label": "Output",
"type": "options",
"options": [
{
"id": "vectara_0-output-retriever-Vectara|VectorStoreRetriever|BaseRetriever",
"name": "retriever",
"label": "Vectara Retriever",
"type": "Vectara | VectorStoreRetriever | BaseRetriever"
},
{
"id": "vectara_0-output-vectorStore-Vectara|VectorStore",
"name": "vectorStore",
"label": "Vectara Vector Store",
"type": "Vectara | VectorStore"
}
],
"default": "retriever"
}
],
"outputs": {
"output": "retriever"
},
"selected": false
},
"selected": false,
"positionAbsolute": {
"x": 199.28476672510158,
"y": 177.63260741741112
},
"dragging": false
}
],
"edges": [
{
"source": "chatOpenAI_0",
"sourceHandle": "chatOpenAI_0-output-chatOpenAI-ChatOpenAI|BaseChatModel|BaseLanguageModel|Runnable",
"target": "conversationalRetrievalQAChain_0",
"targetHandle": "conversationalRetrievalQAChain_0-input-model-BaseChatModel",
"type": "buttonedge",
"id": "chatOpenAI_0-chatOpenAI_0-output-chatOpenAI-ChatOpenAI|BaseChatModel|BaseLanguageModel|Runnable-conversationalRetrievalQAChain_0-conversationalRetrievalQAChain_0-input-model-BaseChatModel",
"data": {
"label": ""
}
},
{
"source": "vectara_0",
"sourceHandle": "vectara_0-output-retriever-Vectara|VectorStoreRetriever|BaseRetriever",
"target": "conversationalRetrievalQAChain_0",
"targetHandle": "conversationalRetrievalQAChain_0-input-vectorStoreRetriever-BaseRetriever",
"type": "buttonedge",
"id": "vectara_0-vectara_0-output-retriever-Vectara|VectorStoreRetriever|BaseRetriever-conversationalRetrievalQAChain_0-conversationalRetrievalQAChain_0-input-vectorStoreRetriever-BaseRetriever",
"data": {
"label": ""
}
}
]
}

View File

@ -0,0 +1,385 @@
{
"nodes": [
{
"width": 300,
"height": 520,
"id": "vectaraQAChain_0",
"position": {
"x": 740.28434119739,
"y": 164.93261446841598
},
"type": "customNode",
"data": {
"id": "vectaraQAChain_0",
"label": "Vectara QA Chain",
"version": 1,
"name": "vectaraQAChain",
"type": "VectaraQAChain",
"baseClasses": ["VectaraQAChain", "BaseChain", "Runnable"],
"category": "Chains",
"description": "QA chain for Vectara",
"inputParams": [
{
"label": "Summarizer Prompt Name",
"name": "summarizerPromptName",
"description": "Summarize the results fetched from Vectara. Read <a target=\"_blank\" href=\"https://docs.vectara.com/docs/learn/grounded-generation/select-a-summarizer\">more</a>",
"type": "options",
"options": [
{
"label": "vectara-summary-ext-v1.2.0 (gpt-3.5-turbo)",
"name": "vectara-summary-ext-v1.2.0"
},
{
"label": "vectara-experimental-summary-ext-2023-10-23-small (gpt-3.5-turbo)",
"name": "vectara-experimental-summary-ext-2023-10-23-small",
"description": "In beta, available to both Growth and Scale Vectara users"
},
{
"label": "vectara-summary-ext-v1.3.0 (gpt-4.0)",
"name": "vectara-summary-ext-v1.3.0",
"description": "Only available to paying Scale Vectara users"
},
{
"label": "vectara-experimental-summary-ext-2023-10-23-med (gpt-4.0)",
"name": "vectara-experimental-summary-ext-2023-10-23-med",
"description": "In beta, only available to paying Scale Vectara users"
}
],
"default": "vectara-summary-ext-v1.2.0",
"id": "vectaraQAChain_0-input-summarizerPromptName-options"
},
{
"label": "Response Language",
"name": "responseLang",
"description": "Return the response in specific language. If not selected, Vectara will automatically detects the language. Read <a target=\"_blank\" href=\"https://docs.vectara.com/docs/learn/grounded-generation/grounded-generation-response-languages\">more</a>",
"type": "options",
"options": [
{
"label": "English",
"name": "eng"
},
{
"label": "German",
"name": "deu"
},
{
"label": "French",
"name": "fra"
},
{
"label": "Chinese",
"name": "zho"
},
{
"label": "Korean",
"name": "kor"
},
{
"label": "Arabic",
"name": "ara"
},
{
"label": "Russian",
"name": "rus"
},
{
"label": "Thai",
"name": "tha"
},
{
"label": "Dutch",
"name": "nld"
},
{
"label": "Italian",
"name": "ita"
},
{
"label": "Portuguese",
"name": "por"
},
{
"label": "Spanish",
"name": "spa"
},
{
"label": "Japanese",
"name": "jpn"
},
{
"label": "Polish",
"name": "pol"
},
{
"label": "Turkish",
"name": "tur"
},
{
"label": "Vietnamese",
"name": "vie"
},
{
"label": "Indonesian",
"name": "ind"
},
{
"label": "Czech",
"name": "ces"
},
{
"label": "Ukrainian",
"name": "ukr"
},
{
"label": "Greek",
"name": "ell"
},
{
"label": "Hebrew",
"name": "heb"
},
{
"label": "Farsi/Persian",
"name": "fas"
},
{
"label": "Hindi",
"name": "hin"
},
{
"label": "Urdu",
"name": "urd"
},
{
"label": "Swedish",
"name": "swe"
},
{
"label": "Bengali",
"name": "ben"
},
{
"label": "Malay",
"name": "msa"
},
{
"label": "Romanian",
"name": "ron"
}
],
"optional": true,
"default": "eng",
"id": "vectaraQAChain_0-input-responseLang-options"
},
{
"label": "Max Summarized Results",
"name": "maxSummarizedResults",
"description": "Maximum results used to build the summarized response",
"type": "number",
"default": 7,
"id": "vectaraQAChain_0-input-maxSummarizedResults-number"
}
],
"inputAnchors": [
{
"label": "Vectara Store",
"name": "vectaraStore",
"type": "VectorStore",
"id": "vectaraQAChain_0-input-vectaraStore-VectorStore"
}
],
"inputs": {
"vectaraStore": "{{vectara_1.data.instance}}",
"summarizerPromptName": "vectara-experimental-summary-ext-2023-10-23-small",
"responseLang": "eng",
"maxSummarizedResults": 7
},
"outputAnchors": [
{
"id": "vectaraQAChain_0-output-vectaraQAChain-VectaraQAChain|BaseChain|Runnable",
"name": "vectaraQAChain",
"label": "VectaraQAChain",
"type": "VectaraQAChain | BaseChain | Runnable"
}
],
"outputs": {},
"selected": false
},
"selected": false,
"positionAbsolute": {
"x": 740.28434119739,
"y": 164.93261446841598
},
"dragging": false
},
{
"width": 300,
"height": 536,
"id": "vectara_1",
"position": {
"x": 139.43135627266395,
"y": 189.3685569634871
},
"type": "customNode",
"data": {
"id": "vectara_1",
"label": "Vectara",
"version": 2,
"name": "vectara",
"type": "Vectara",
"baseClasses": ["Vectara", "VectorStoreRetriever", "BaseRetriever"],
"category": "Vector Stores",
"description": "Upsert embedded data and perform similarity search upon query using Vectara, a LLM-powered search-as-a-service",
"inputParams": [
{
"label": "Connect Credential",
"name": "credential",
"type": "credential",
"credentialNames": ["vectaraApi"],
"id": "vectara_1-input-credential-credential"
},
{
"label": "File",
"name": "file",
"description": "File to upload to Vectara. Supported file types: https://docs.vectara.com/docs/api-reference/indexing-apis/file-upload/file-upload-filetypes",
"type": "file",
"optional": true,
"id": "vectara_1-input-file-file"
},
{
"label": "Metadata Filter",
"name": "filter",
"description": "Filter to apply to Vectara metadata. Refer to the <a target=\"_blank\" href=\"https://docs.flowiseai.com/vector-stores/vectara\">documentation</a> on how to use Vectara filters with Flowise.",
"type": "string",
"additionalParams": true,
"optional": true,
"id": "vectara_1-input-filter-string"
},
{
"label": "Sentences Before",
"name": "sentencesBefore",
"description": "Number of sentences to fetch before the matched sentence. Defaults to 2.",
"type": "number",
"default": 2,
"additionalParams": true,
"optional": true,
"id": "vectara_1-input-sentencesBefore-number"
},
{
"label": "Sentences After",
"name": "sentencesAfter",
"description": "Number of sentences to fetch after the matched sentence. Defaults to 2.",
"type": "number",
"default": 2,
"additionalParams": true,
"optional": true,
"id": "vectara_1-input-sentencesAfter-number"
},
{
"label": "Lambda",
"name": "lambda",
"description": "Enable hybrid search to improve retrieval accuracy by adjusting the balance (from 0 to 1) between neural search and keyword-based search factors.A value of 0.0 means that only neural search is used, while a value of 1.0 means that only keyword-based search is used. Defaults to 0.0 (neural only).",
"default": 0,
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_1-input-lambda-number"
},
{
"label": "Top K",
"name": "topK",
"description": "Number of top results to fetch. Defaults to 5",
"placeholder": "5",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_1-input-topK-number"
},
{
"label": "MMR K",
"name": "mmrK",
"description": "Number of top results to fetch for MMR. Defaults to 50",
"placeholder": "50",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_1-input-mmrK-number"
},
{
"label": "MMR diversity bias",
"name": "mmrDiversityBias",
"step": 0.1,
"description": "The diversity bias to use for MMR. This is a value between 0.0 and 1.0Values closer to 1.0 optimize for the most diverse results.Defaults to 0 (MMR disabled)",
"placeholder": "0.0",
"type": "number",
"additionalParams": true,
"optional": true,
"id": "vectara_1-input-mmrDiversityBias-number"
}
],
"inputAnchors": [
{
"label": "Document",
"name": "document",
"type": "Document",
"list": true,
"optional": true,
"id": "vectara_1-input-document-Document"
}
],
"inputs": {
"document": "",
"filter": "",
"sentencesBefore": 2,
"sentencesAfter": 2,
"lambda": "",
"topK": "",
"mmrK": "",
"mmrDiversityBias": ""
},
"outputAnchors": [
{
"name": "output",
"label": "Output",
"type": "options",
"options": [
{
"id": "vectara_1-output-retriever-Vectara|VectorStoreRetriever|BaseRetriever",
"name": "retriever",
"label": "Vectara Retriever",
"type": "Vectara | VectorStoreRetriever | BaseRetriever"
},
{
"id": "vectara_1-output-vectorStore-Vectara|VectorStore",
"name": "vectorStore",
"label": "Vectara Vector Store",
"type": "Vectara | VectorStore"
}
],
"default": "retriever"
}
],
"outputs": {
"output": "vectorStore"
},
"selected": false
},
"positionAbsolute": {
"x": 139.43135627266395,
"y": 189.3685569634871
},
"selected": false,
"dragging": false
}
],
"edges": [
{
"source": "vectara_1",
"sourceHandle": "vectara_1-output-vectorStore-Vectara|VectorStore",
"target": "vectaraQAChain_0",
"targetHandle": "vectaraQAChain_0-input-vectaraStore-VectorStore",
"type": "buttonedge",
"id": "vectara_1-vectara_1-output-vectorStore-Vectara|VectorStore-vectaraQAChain_0-vectaraQAChain_0-input-vectaraStore-VectorStore"
}
]
}

View File

@ -1,6 +1,6 @@
{ {
"name": "flowise", "name": "flowise",
"version": "1.4.10", "version": "1.4.11",
"description": "Flowiseai Server", "description": "Flowiseai Server",
"main": "dist/index", "main": "dist/index",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",

View File

@ -1824,7 +1824,8 @@ export class App {
if (result?.sourceDocuments) apiMessage.sourceDocuments = JSON.stringify(result.sourceDocuments) if (result?.sourceDocuments) apiMessage.sourceDocuments = JSON.stringify(result.sourceDocuments)
if (result?.usedTools) apiMessage.usedTools = JSON.stringify(result.usedTools) if (result?.usedTools) apiMessage.usedTools = JSON.stringify(result.usedTools)
if (result?.fileAnnotations) apiMessage.fileAnnotations = JSON.stringify(result.fileAnnotations) if (result?.fileAnnotations) apiMessage.fileAnnotations = JSON.stringify(result.fileAnnotations)
await this.addChatMessage(apiMessage) const chatMessage = await this.addChatMessage(apiMessage)
result.chatMessageId = chatMessage.id
logger.debug(`[server]: Finished running ${nodeToExecuteData.label} (${nodeToExecuteData.id})`) logger.debug(`[server]: Finished running ${nodeToExecuteData.label} (${nodeToExecuteData.id})`)
await this.telemetry.sendTelemetry('prediction_sent', { await this.telemetry.sendTelemetry('prediction_sent', {

View File

@ -1,6 +1,6 @@
{ {
"name": "flowise-ui", "name": "flowise-ui",
"version": "1.4.7", "version": "1.4.8",
"license": "SEE LICENSE IN LICENSE.md", "license": "SEE LICENSE IN LICENSE.md",
"homepage": "https://flowiseai.com", "homepage": "https://flowiseai.com",
"author": { "author": {