Add Vectara vectorstore components

This commit is contained in:
Seif 2023-07-26 09:33:20 -07:00
parent ffc8033a97
commit 3aa585fea4
2 changed files with 247 additions and 0 deletions

View File

@ -0,0 +1,115 @@
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { getBaseClasses } from '../../../src/utils'
import { VectaraStore, VectaraLibArgs, VectaraFilter } from 'langchain/vectorstores/vectara'
class VectaraExisting_VectorStores implements INode {
label: string
name: string
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Vectara Load Existing Index'
this.name = 'vectaraExistingIndex'
this.type = 'Vectara'
this.icon = 'vectara.png'
this.category = 'Vector Stores'
this.description = 'Load existing index from Vectara (i.e: Document has been upserted)'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.inputs = [
{
label: 'Vectara Customer ID',
name: 'customerID',
type: 'string'
},
{
label: 'Vectara Corpus ID',
name: 'corpusID',
type: 'string'
},
{
label: 'Vectara API Key',
name: 'apiKey',
type: 'password'
},
{
label: 'Vectara Metadata Filter',
name: 'filter',
type: 'json',
additionalParams: true,
optional: true
},
{
label: 'Lambda',
name: 'lambda',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Defaults to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Vectara Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Vectara Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(VectaraStore)]
}
]
}
async init(nodeData: INodeData): Promise<any> {
const customerId = nodeData.inputs?.customerID as number
const corpusId = nodeData.inputs?.corpusID as number
const apiKey = nodeData.inputs?.apiKey as string
const vectaraMetadatafilter = nodeData.inputs?.filter as VectaraFilter
const lambda = nodeData.inputs?.lambda as number
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseInt(topK, 10) : 4
const vectaraArgs: VectaraLibArgs = {
apiKey: apiKey,
customerId: customerId,
corpusId: corpusId
}
const vectaraFilter: VectaraFilter = {}
if (vectaraMetadatafilter) {
const metadatafilter = typeof vectaraMetadatafilter === 'object' ? vectaraMetadatafilter : JSON.parse(vectaraMetadatafilter)
vectaraFilter.filter = metadatafilter
}
if (lambda) vectaraFilter.lambda = lambda
const vectorStore = new VectaraStore(vectaraArgs)
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(k, vectaraFilter)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
module.exports = { nodeClass: VectaraExisting_VectorStores }

View File

@ -0,0 +1,132 @@
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { Embeddings } from 'langchain/embeddings/base'
import { getBaseClasses } from '../../../src/utils'
import { VectaraStore, VectaraLibArgs, VectaraFilter } from 'langchain/vectorstores/vectara'
import { Document } from 'langchain/document'
import { flatten } from 'lodash'
class VectaraExisting_VectorStores implements INode {
label: string
name: string
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Vectara Upsert Document'
this.name = 'vectaraExisting'
this.type = 'Vectara'
this.icon = 'vectara.png'
this.category = 'Vector Stores'
this.description = 'Upsert documents to Vectara'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.inputs = [
{
label: 'Vectara Customer ID',
name: 'customerID',
type: 'string'
},
{
label: 'Vectara Corpus ID',
name: 'corpusID',
type: 'string'
},
{
label: 'Vectara API Key',
name: 'apiKey',
type: 'password'
},
{
label: 'Document',
name: 'document',
type: 'Document',
list: true
},
{
label: 'Filter',
name: 'filter',
type: 'json',
additionalParams: true,
optional: true
},
{
label: 'Lambda',
name: 'lambda',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Defaults to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Vectara Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Vectara Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(VectaraStore)]
}
]
}
async init(nodeData: INodeData): Promise<any> {
const customerId = nodeData.inputs?.customerID as number
const corpusId = nodeData.inputs?.corpusID as number
const apiKey = nodeData.inputs?.apiKey as string
const docs = nodeData.inputs?.document as Document[]
const embeddings = {} as Embeddings
const vectaraMetadatafilter = nodeData.inputs?.filter as VectaraFilter
const lambda = nodeData.inputs?.lambda as number
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseInt(topK, 10) : 4
const vectaraArgs: VectaraLibArgs = {
apiKey: apiKey,
customerId: customerId,
corpusId: corpusId
}
const vectaraFilter: VectaraFilter = {}
if (vectaraMetadatafilter) {
const metadatafilter = typeof vectaraMetadatafilter === 'object' ? vectaraMetadatafilter : JSON.parse(vectaraMetadatafilter)
vectaraFilter.filter = metadatafilter
}
if (lambda) vectaraFilter.lambda = lambda
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
finalDocs.push(new Document(flattenDocs[i]))
}
const vectorStore = await VectaraStore.fromDocuments(finalDocs, embeddings, vectaraArgs)
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(k, vectaraFilter)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
module.exports = { nodeClass: VectaraExisting_VectorStores }