Add Vectara vectorstore components
This commit is contained in:
parent
ffc8033a97
commit
3aa585fea4
|
|
@ -0,0 +1,115 @@
|
|||
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { VectaraStore, VectaraLibArgs, VectaraFilter } from 'langchain/vectorstores/vectara'
|
||||
|
||||
class VectaraExisting_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Vectara Load Existing Index'
|
||||
this.name = 'vectaraExistingIndex'
|
||||
this.type = 'Vectara'
|
||||
this.icon = 'vectara.png'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Load existing index from Vectara (i.e: Document has been upserted)'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Vectara Customer ID',
|
||||
name: 'customerID',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Vectara Corpus ID',
|
||||
name: 'corpusID',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Vectara API Key',
|
||||
name: 'apiKey',
|
||||
type: 'password'
|
||||
},
|
||||
{
|
||||
label: 'Vectara Metadata Filter',
|
||||
name: 'filter',
|
||||
type: 'json',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Lambda',
|
||||
name: 'lambda',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Defaults to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'Vectara Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'Vectara Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(VectaraStore)]
|
||||
}
|
||||
]
|
||||
}
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const customerId = nodeData.inputs?.customerID as number
|
||||
const corpusId = nodeData.inputs?.corpusID as number
|
||||
const apiKey = nodeData.inputs?.apiKey as string
|
||||
const vectaraMetadatafilter = nodeData.inputs?.filter as VectaraFilter
|
||||
const lambda = nodeData.inputs?.lambda as number
|
||||
const output = nodeData.outputs?.output as string
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseInt(topK, 10) : 4
|
||||
|
||||
const vectaraArgs: VectaraLibArgs = {
|
||||
apiKey: apiKey,
|
||||
customerId: customerId,
|
||||
corpusId: corpusId
|
||||
}
|
||||
|
||||
const vectaraFilter: VectaraFilter = {}
|
||||
|
||||
if (vectaraMetadatafilter) {
|
||||
const metadatafilter = typeof vectaraMetadatafilter === 'object' ? vectaraMetadatafilter : JSON.parse(vectaraMetadatafilter)
|
||||
vectaraFilter.filter = metadatafilter
|
||||
}
|
||||
|
||||
if (lambda) vectaraFilter.lambda = lambda
|
||||
|
||||
const vectorStore = new VectaraStore(vectaraArgs)
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k, vectaraFilter)
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: VectaraExisting_VectorStores }
|
||||
|
|
@ -0,0 +1,132 @@
|
|||
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { VectaraStore, VectaraLibArgs, VectaraFilter } from 'langchain/vectorstores/vectara'
|
||||
import { Document } from 'langchain/document'
|
||||
import { flatten } from 'lodash'
|
||||
|
||||
class VectaraExisting_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Vectara Upsert Document'
|
||||
this.name = 'vectaraExisting'
|
||||
this.type = 'Vectara'
|
||||
this.icon = 'vectara.png'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Upsert documents to Vectara'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Vectara Customer ID',
|
||||
name: 'customerID',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Vectara Corpus ID',
|
||||
name: 'corpusID',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Vectara API Key',
|
||||
name: 'apiKey',
|
||||
type: 'password'
|
||||
},
|
||||
{
|
||||
label: 'Document',
|
||||
name: 'document',
|
||||
type: 'Document',
|
||||
list: true
|
||||
},
|
||||
{
|
||||
label: 'Filter',
|
||||
name: 'filter',
|
||||
type: 'json',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Lambda',
|
||||
name: 'lambda',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Defaults to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'Vectara Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'Vectara Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(VectaraStore)]
|
||||
}
|
||||
]
|
||||
}
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const customerId = nodeData.inputs?.customerID as number
|
||||
const corpusId = nodeData.inputs?.corpusID as number
|
||||
const apiKey = nodeData.inputs?.apiKey as string
|
||||
const docs = nodeData.inputs?.document as Document[]
|
||||
const embeddings = {} as Embeddings
|
||||
const vectaraMetadatafilter = nodeData.inputs?.filter as VectaraFilter
|
||||
const lambda = nodeData.inputs?.lambda as number
|
||||
const output = nodeData.outputs?.output as string
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseInt(topK, 10) : 4
|
||||
|
||||
const vectaraArgs: VectaraLibArgs = {
|
||||
apiKey: apiKey,
|
||||
customerId: customerId,
|
||||
corpusId: corpusId
|
||||
}
|
||||
|
||||
const vectaraFilter: VectaraFilter = {}
|
||||
|
||||
if (vectaraMetadatafilter) {
|
||||
const metadatafilter = typeof vectaraMetadatafilter === 'object' ? vectaraMetadatafilter : JSON.parse(vectaraMetadatafilter)
|
||||
vectaraFilter.filter = metadatafilter
|
||||
}
|
||||
|
||||
if (lambda) vectaraFilter.lambda = lambda
|
||||
|
||||
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
||||
const finalDocs = []
|
||||
for (let i = 0; i < flattenDocs.length; i += 1) {
|
||||
finalDocs.push(new Document(flattenDocs[i]))
|
||||
}
|
||||
|
||||
const vectorStore = await VectaraStore.fromDocuments(finalDocs, embeddings, vectaraArgs)
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k, vectaraFilter)
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: VectaraExisting_VectorStores }
|
||||
Loading…
Reference in New Issue