add vectara chain
This commit is contained in:
parent
10c3066a91
commit
40a63008ec
|
|
@ -0,0 +1,147 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { VectorDBQAChain } from 'langchain/chains'
|
||||
import { Document } from 'langchain/document'
|
||||
import { VectaraStore } from 'langchain/vectorstores/vectara'
|
||||
import fetch from 'node-fetch'
|
||||
|
||||
class VectaraChain_Chains implements INode {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
description: string
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Vectara QA Chain'
|
||||
this.name = 'vectaraQAChain'
|
||||
this.version = 1.0
|
||||
this.type = 'VectaraQAChain'
|
||||
this.icon = 'vectara.png'
|
||||
this.category = 'Chains'
|
||||
this.description = 'QA chain for Vectara'
|
||||
this.baseClasses = [this.type, ...getBaseClasses(VectorDBQAChain)]
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Vectara Vector Store',
|
||||
name: 'vectaraStore',
|
||||
type: 'VectorStore'
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(): Promise<any> {
|
||||
return null
|
||||
}
|
||||
|
||||
async run(nodeData: INodeData, input: string): Promise<object> {
|
||||
const vectorStore = nodeData.inputs?.vectaraStore as VectaraStore
|
||||
const topK = (vectorStore as any)?.k ?? 4
|
||||
|
||||
const headers = await vectorStore.getJsonHeader()
|
||||
const vectaraFilter = (vectorStore as any).vectaraFilter ?? {}
|
||||
const corpusId: number[] = (vectorStore as any).corpusId ?? []
|
||||
const customerId = (vectorStore as any).customerId ?? ''
|
||||
|
||||
const corpusKeys = corpusId.map((corpusId) => ({
|
||||
customerId,
|
||||
corpusId,
|
||||
metadataFilter: vectaraFilter?.filter ?? '',
|
||||
lexicalInterpolationConfig: { lambda: vectaraFilter?.lambda ?? 0.025 }
|
||||
}))
|
||||
|
||||
let summarizerPromptName = 'vectara-experimental-summary-ext-2023-10-23-med' // can let user select
|
||||
let responseLang = 'en' // can let user select
|
||||
let maxSummarizedResults = 5 // can let user specify
|
||||
|
||||
const data = {
|
||||
query: [
|
||||
{
|
||||
query: input,
|
||||
start: 0,
|
||||
numResults: topK,
|
||||
contextConfig: {
|
||||
sentencesAfter: vectaraFilter?.contextConfig?.sentencesAfter ?? 2,
|
||||
sentencesBefore: vectaraFilter?.contextConfig?.sentencesBefore ?? 2
|
||||
},
|
||||
corpusKey: corpusKeys,
|
||||
summary: [
|
||||
{
|
||||
summarizerPromptName,
|
||||
responseLang,
|
||||
maxSummarizedResults
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
try {
|
||||
const response = await fetch(`https://api.vectara.io/v1/query`, {
|
||||
method: 'POST',
|
||||
headers: headers?.headers,
|
||||
body: JSON.stringify(data)
|
||||
})
|
||||
|
||||
if (response.status !== 200) {
|
||||
throw new Error(`Vectara API returned status code ${response.status}`)
|
||||
}
|
||||
|
||||
const result = await response.json()
|
||||
const responses = result.responseSet[0].response
|
||||
const documents = result.responseSet[0].document
|
||||
let summarizedText = ''
|
||||
|
||||
for (let i = 0; i < responses.length; i += 1) {
|
||||
const responseMetadata = responses[i].metadata
|
||||
const documentMetadata = documents[responses[i].documentIndex].metadata
|
||||
const combinedMetadata: Record<string, unknown> = {}
|
||||
|
||||
responseMetadata.forEach((item: { name: string; value: unknown }) => {
|
||||
combinedMetadata[item.name] = item.value
|
||||
})
|
||||
|
||||
documentMetadata.forEach((item: { name: string; value: unknown }) => {
|
||||
combinedMetadata[item.name] = item.value
|
||||
})
|
||||
|
||||
responses[i].metadata = combinedMetadata
|
||||
}
|
||||
|
||||
const summaryStatus = result.responseSet[0].summary[0].status
|
||||
if (summaryStatus.length > 0 && summaryStatus[0].code === 'BAD_REQUEST') {
|
||||
throw new Error(
|
||||
`BAD REQUEST: Too much text for the summarizer to summarize. Please try reducing the number of search results to summarize, or the context of each result by adjusting the 'summary_num_sentences', and 'summary_num_results' parameters respectively.`
|
||||
)
|
||||
}
|
||||
|
||||
if (
|
||||
summaryStatus.length > 0 &&
|
||||
summaryStatus[0].code === 'NOT_FOUND' &&
|
||||
summaryStatus[0].statusDetail === 'Failed to retrieve summarizer.'
|
||||
) {
|
||||
throw new Error(`BAD REQUEST: summarizer ${summarizerPromptName} is invalid for this account.`)
|
||||
}
|
||||
|
||||
summarizedText = result.responseSet[0].summary[0]?.text
|
||||
|
||||
const sourceDocuments: Document[] = responses.map(
|
||||
(response: { text: string; metadata: Record<string, unknown>; score: number }) =>
|
||||
new Document({
|
||||
pageContent: response.text,
|
||||
metadata: response.metadata
|
||||
})
|
||||
)
|
||||
|
||||
return { text: summarizedText, sourceDocuments: sourceDocuments }
|
||||
} catch (error) {
|
||||
throw new Error(error)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: VectaraChain_Chains }
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 66 KiB |
|
|
@ -842,7 +842,7 @@ export const isFlowValidForStream = (reactFlowNodes: IReactFlowNode[], endingNod
|
|||
let isValidChainOrAgent = false
|
||||
if (endingNodeData.category === 'Chains') {
|
||||
// Chains that are not available to stream
|
||||
const blacklistChains = ['openApiChain']
|
||||
const blacklistChains = ['openApiChain', 'vectaraQAChain']
|
||||
isValidChainOrAgent = !blacklistChains.includes(endingNodeData.name)
|
||||
} else if (endingNodeData.category === 'Agents') {
|
||||
// Agent that are available to stream
|
||||
|
|
|
|||
|
|
@ -699,7 +699,10 @@ const ViewMessagesDialog = ({ show, dialogProps, onCancel }) => {
|
|||
{message.sourceDocuments && (
|
||||
<div style={{ display: 'block', flexDirection: 'row', width: '100%' }}>
|
||||
{removeDuplicateURL(message).map((source, index) => {
|
||||
const URL = isValidURL(source.metadata.source)
|
||||
const URL =
|
||||
source.metadata && source.metadata.source
|
||||
? isValidURL(source.metadata.source)
|
||||
: undefined
|
||||
return (
|
||||
<Chip
|
||||
size='small'
|
||||
|
|
|
|||
|
|
@ -423,10 +423,14 @@ export const removeDuplicateURL = (message) => {
|
|||
if (!message.sourceDocuments) return newSourceDocuments
|
||||
|
||||
message.sourceDocuments.forEach((source) => {
|
||||
if (isValidURL(source.metadata.source) && !visitedURLs.includes(source.metadata.source)) {
|
||||
visitedURLs.push(source.metadata.source)
|
||||
newSourceDocuments.push(source)
|
||||
} else if (!isValidURL(source.metadata.source)) {
|
||||
if (source.metadata && source.metadata.source) {
|
||||
if (isValidURL(source.metadata.source) && !visitedURLs.includes(source.metadata.source)) {
|
||||
visitedURLs.push(source.metadata.source)
|
||||
newSourceDocuments.push(source)
|
||||
} else if (!isValidURL(source.metadata.source)) {
|
||||
newSourceDocuments.push(source)
|
||||
}
|
||||
} else {
|
||||
newSourceDocuments.push(source)
|
||||
}
|
||||
})
|
||||
|
|
|
|||
|
|
@ -379,7 +379,10 @@ export const ChatMessage = ({ open, chatflowid, isDialog }) => {
|
|||
{message.sourceDocuments && (
|
||||
<div style={{ display: 'block', flexDirection: 'row', width: '100%' }}>
|
||||
{removeDuplicateURL(message).map((source, index) => {
|
||||
const URL = isValidURL(source.metadata.source)
|
||||
const URL =
|
||||
source.metadata && source.metadata.source
|
||||
? isValidURL(source.metadata.source)
|
||||
: undefined
|
||||
return (
|
||||
<Chip
|
||||
size='small'
|
||||
|
|
|
|||
Loading…
Reference in New Issue