Add feature to be able to chain prompt values
This commit is contained in:
parent
0681a34408
commit
4b9c39cf54
|
|
@ -11,6 +11,7 @@
|
|||
],
|
||||
"scripts": {
|
||||
"build": "turbo run build",
|
||||
"build-force": "turbo run build --force",
|
||||
"dev": "turbo run dev --parallel",
|
||||
"start": "run-script-os",
|
||||
"start:windows": "cd packages/server/bin && run start",
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { LLMChain } from 'langchain/chains'
|
||||
import { BaseLanguageModel } from 'langchain/base_language'
|
||||
|
|
@ -13,6 +13,7 @@ class LLMChain_Chains implements INode {
|
|||
baseClasses: string[]
|
||||
description: string
|
||||
inputs: INodeParams[]
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'LLM Chain'
|
||||
|
|
@ -33,6 +34,13 @@ class LLMChain_Chains implements INode {
|
|||
name: 'prompt',
|
||||
type: 'BasePromptTemplate'
|
||||
},
|
||||
{
|
||||
label: 'Chain Name',
|
||||
name: 'chainName',
|
||||
type: 'string',
|
||||
placeholder: 'Task Creation Chain',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Format Prompt Values',
|
||||
name: 'promptValues',
|
||||
|
|
@ -42,57 +50,99 @@ class LLMChain_Chains implements INode {
|
|||
"input_language": "English",
|
||||
"output_language": "French"
|
||||
}`,
|
||||
optional: true
|
||||
optional: true,
|
||||
acceptVariable: true,
|
||||
list: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: this.label,
|
||||
name: this.name,
|
||||
type: this.type
|
||||
},
|
||||
{
|
||||
label: 'Output Prediction',
|
||||
name: 'outputPrediction',
|
||||
type: 'string'
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
async init(nodeData: INodeData, input: string): Promise<any> {
|
||||
const model = nodeData.inputs?.model as BaseLanguageModel
|
||||
const prompt = nodeData.inputs?.prompt as BasePromptTemplate
|
||||
const output = nodeData.outputs?.output as string
|
||||
const promptValuesStr = nodeData.inputs?.promptValues as string
|
||||
|
||||
const chain = new LLMChain({ llm: model, prompt })
|
||||
return chain
|
||||
if (output === this.name) {
|
||||
const chain = new LLMChain({ llm: model, prompt })
|
||||
return chain
|
||||
} else if (output === 'outputPrediction') {
|
||||
const chain = new LLMChain({ llm: model, prompt })
|
||||
const inputVariables = chain.prompt.inputVariables as string[] // ["product"]
|
||||
const res = await runPrediction(inputVariables, chain, input, promptValuesStr)
|
||||
// eslint-disable-next-line no-console
|
||||
console.log('\x1b[92m\x1b[1m\n*****OUTPUT PREDICTION*****\n\x1b[0m\x1b[0m')
|
||||
// eslint-disable-next-line no-console
|
||||
console.log(res)
|
||||
return res
|
||||
}
|
||||
}
|
||||
|
||||
async run(nodeData: INodeData, input: string): Promise<string> {
|
||||
const inputVariables = nodeData.instance.prompt.inputVariables as string[] // ["product"]
|
||||
const chain = nodeData.instance as LLMChain
|
||||
const promptValuesStr = nodeData.inputs?.promptValues as string
|
||||
const res = await runPrediction(inputVariables, chain, input, promptValuesStr)
|
||||
// eslint-disable-next-line no-console
|
||||
console.log('\x1b[93m\x1b[1m\n*****FINAL RESULT*****\n\x1b[0m\x1b[0m')
|
||||
// eslint-disable-next-line no-console
|
||||
console.log(res)
|
||||
return res
|
||||
}
|
||||
}
|
||||
|
||||
if (inputVariables.length === 1) {
|
||||
const res = await chain.run(input)
|
||||
return res
|
||||
} else if (inputVariables.length > 1) {
|
||||
const promptValuesStr = nodeData.inputs?.promptValues as string
|
||||
if (!promptValuesStr) throw new Error('Please provide Prompt Values')
|
||||
const runPrediction = async (inputVariables: string[], chain: LLMChain, input: string, promptValuesStr: string) => {
|
||||
if (inputVariables.length === 1) {
|
||||
const res = await chain.run(input)
|
||||
return res
|
||||
} else if (inputVariables.length > 1) {
|
||||
if (!promptValuesStr) throw new Error('Please provide Prompt Values')
|
||||
const promptValues = JSON.parse(promptValuesStr.replace(/\s/g, ''))
|
||||
|
||||
const promptValues = JSON.parse(promptValuesStr.replace(/\s/g, ''))
|
||||
let seen: string[] = []
|
||||
|
||||
let seen: string[] = []
|
||||
|
||||
for (const variable of inputVariables) {
|
||||
seen.push(variable)
|
||||
if (promptValues[variable]) {
|
||||
seen.pop()
|
||||
}
|
||||
for (const variable of inputVariables) {
|
||||
seen.push(variable)
|
||||
if (promptValues[variable]) {
|
||||
seen.pop()
|
||||
}
|
||||
|
||||
if (seen.length === 1) {
|
||||
const lastValue = seen.pop()
|
||||
if (!lastValue) throw new Error('Please provide Prompt Values')
|
||||
const options = {
|
||||
...promptValues,
|
||||
[lastValue]: input
|
||||
}
|
||||
const res = await chain.call(options)
|
||||
return res?.text
|
||||
} else {
|
||||
throw new Error('Please provide Prompt Values')
|
||||
}
|
||||
} else {
|
||||
const res = await chain.run(input)
|
||||
return res
|
||||
}
|
||||
|
||||
if (seen.length === 0) {
|
||||
// All inputVariables have fixed values specified
|
||||
const options = {
|
||||
...promptValues
|
||||
}
|
||||
const res = await chain.call(options)
|
||||
return res?.text
|
||||
} else if (seen.length === 1) {
|
||||
// If one inputVariable is not specify, use input (user's question) as value
|
||||
const lastValue = seen.pop()
|
||||
if (!lastValue) throw new Error('Please provide Prompt Values')
|
||||
const options = {
|
||||
...promptValues,
|
||||
[lastValue]: input
|
||||
}
|
||||
const res = await chain.call(options)
|
||||
return res?.text
|
||||
} else {
|
||||
throw new Error(`Please provide Prompt Values for: ${seen.join(', ')}`)
|
||||
}
|
||||
} else {
|
||||
const res = await chain.run(input)
|
||||
return res
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -2,18 +2,7 @@
|
|||
* Types
|
||||
*/
|
||||
|
||||
export type NodeParamsType =
|
||||
| 'asyncOptions'
|
||||
| 'options'
|
||||
| 'string'
|
||||
| 'number'
|
||||
| 'boolean'
|
||||
| 'password'
|
||||
| 'json'
|
||||
| 'code'
|
||||
| 'date'
|
||||
| 'file'
|
||||
| 'folder'
|
||||
export type NodeParamsType = 'options' | 'string' | 'number' | 'boolean' | 'password' | 'json' | 'code' | 'date' | 'file' | 'folder'
|
||||
|
||||
export type CommonType = string | number | boolean | undefined | null
|
||||
|
||||
|
|
@ -40,6 +29,13 @@ export interface INodeOptionsValue {
|
|||
description?: string
|
||||
}
|
||||
|
||||
export interface INodeOutputsValue {
|
||||
label: string
|
||||
name: string
|
||||
type: string
|
||||
description?: string
|
||||
}
|
||||
|
||||
export interface INodeParams {
|
||||
label: string
|
||||
name: string
|
||||
|
|
@ -50,6 +46,7 @@ export interface INodeParams {
|
|||
optional?: boolean | INodeDisplay
|
||||
rows?: number
|
||||
list?: boolean
|
||||
acceptVariable?: boolean
|
||||
placeholder?: string
|
||||
fileType?: string
|
||||
}
|
||||
|
|
@ -75,12 +72,15 @@ export interface INodeProperties {
|
|||
|
||||
export interface INode extends INodeProperties {
|
||||
inputs?: INodeParams[]
|
||||
getInstance?(nodeData: INodeData): Promise<string>
|
||||
output?: INodeOutputsValue[]
|
||||
init?(nodeData: INodeData, input: string, options?: ICommonObject): Promise<any>
|
||||
run?(nodeData: INodeData, input: string, options?: ICommonObject): Promise<string>
|
||||
}
|
||||
|
||||
export interface INodeData extends INodeProperties {
|
||||
id: string
|
||||
inputs?: ICommonObject
|
||||
outputs?: ICommonObject
|
||||
instance?: any
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 360,
|
||||
"height": 366,
|
||||
"id": "promptTemplate_0",
|
||||
"position": {
|
||||
"x": 294.38456937448433,
|
||||
|
|
@ -50,7 +50,7 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 886,
|
||||
"height": 905,
|
||||
"id": "fewShotPromptTemplate_0",
|
||||
"position": {
|
||||
"x": 719.2200337843097,
|
||||
|
|
@ -223,11 +223,11 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 461,
|
||||
"height": 592,
|
||||
"id": "llmChain_0",
|
||||
"position": {
|
||||
"x": 1499.2654451385026,
|
||||
"y": 356.3275374721362
|
||||
"x": 1489.0277667172852,
|
||||
"y": 357.461975349771
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -239,13 +239,24 @@
|
|||
"category": "Chains",
|
||||
"description": "Chain to run queries against LLMs",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Chain Name",
|
||||
"name": "chainName",
|
||||
"type": "string",
|
||||
"placeholder": "Task Creation Chain",
|
||||
"optional": true,
|
||||
"id": "llmChain_0-input-chainName-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 5,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "llmChain_0-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
|
|
@ -265,22 +276,40 @@
|
|||
"inputs": {
|
||||
"model": "{{openAI_0.data.instance}}",
|
||||
"prompt": "{{fewShotPromptTemplate_0.data.instance}}",
|
||||
"chainName": "",
|
||||
"promptValues": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "llmChain_0-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLMChain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "llmChain_0-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLM Chain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_0-output-outputPrediction-string",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "llmChain"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1499.2654451385026,
|
||||
"y": 356.3275374721362
|
||||
"x": 1489.0277667172852,
|
||||
"y": 357.461975349771
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,508 @@
|
|||
{
|
||||
"description": "Use output from a chain as prompt for another chain",
|
||||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 592,
|
||||
"id": "llmChain_0",
|
||||
"position": {
|
||||
"x": 586.058087758348,
|
||||
"y": 109.99914917840562
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "llmChain_0",
|
||||
"label": "LLM Chain",
|
||||
"name": "llmChain",
|
||||
"type": "LLMChain",
|
||||
"baseClasses": ["LLMChain", "BaseChain"],
|
||||
"category": "Chains",
|
||||
"description": "Chain to run queries against LLMs",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Chain Name",
|
||||
"name": "chainName",
|
||||
"type": "string",
|
||||
"placeholder": "Task Creation Chain",
|
||||
"optional": true,
|
||||
"id": "llmChain_0-input-chainName-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 5,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "llmChain_0-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Language Model",
|
||||
"name": "model",
|
||||
"type": "BaseLanguageModel",
|
||||
"id": "llmChain_0-input-model-BaseLanguageModel"
|
||||
},
|
||||
{
|
||||
"label": "Prompt",
|
||||
"name": "prompt",
|
||||
"type": "BasePromptTemplate",
|
||||
"id": "llmChain_0-input-prompt-BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"model": "{{openAI_0.data.instance}}",
|
||||
"prompt": "{{promptTemplate_0.data.instance}}",
|
||||
"chainName": "FirstChain",
|
||||
"promptValues": "{\n \"objective\": \"{{question}}\"\n}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "llmChain_0-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLM Chain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_0-output-outputPrediction-string",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "outputPrediction"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 586.058087758348,
|
||||
"y": 109.99914917840562
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 366,
|
||||
"id": "promptTemplate_0",
|
||||
"position": {
|
||||
"x": 231.20329590069747,
|
||||
"y": 313.54994365714185
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_0",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 5,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_0-input-template-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "You are an AI who performs one task based on the following objective: {objective}.\nRespond with how you would complete this task:"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 231.20329590069747,
|
||||
"y": 313.54994365714185
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 592,
|
||||
"id": "llmChain_1",
|
||||
"position": {
|
||||
"x": 1637.4327907249694,
|
||||
"y": 127.71255193457947
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "llmChain_1",
|
||||
"label": "LLM Chain",
|
||||
"name": "llmChain",
|
||||
"type": "LLMChain",
|
||||
"baseClasses": ["LLMChain", "BaseChain"],
|
||||
"category": "Chains",
|
||||
"description": "Chain to run queries against LLMs",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Chain Name",
|
||||
"name": "chainName",
|
||||
"type": "string",
|
||||
"placeholder": "Task Creation Chain",
|
||||
"optional": true,
|
||||
"id": "llmChain_1-input-chainName-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 5,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "llmChain_1-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Language Model",
|
||||
"name": "model",
|
||||
"type": "BaseLanguageModel",
|
||||
"id": "llmChain_1-input-model-BaseLanguageModel"
|
||||
},
|
||||
{
|
||||
"label": "Prompt",
|
||||
"name": "prompt",
|
||||
"type": "BasePromptTemplate",
|
||||
"id": "llmChain_1-input-prompt-BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"model": "{{openAI_0.data.instance}}",
|
||||
"prompt": "{{promptTemplate_1.data.instance}}",
|
||||
"chainName": "FinalChain",
|
||||
"promptValues": "{\n \"objective\": \"{{question}}\",\n \"result\": \"{{llmChain_0.data.instance}}\"\n}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "llmChain_1-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLM Chain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_1-output-outputPrediction-string",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "llmChain"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1637.4327907249694,
|
||||
"y": 127.71255193457947
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 366,
|
||||
"id": "promptTemplate_1",
|
||||
"position": {
|
||||
"x": 950.292796637893,
|
||||
"y": 62.31864791878181
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_1",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 5,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_1-input-template-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "You are a task creation AI that uses the result of an execution agent to create new tasks with the following objective: {objective}.\nThe last completed task has the result: {result}.\nBased on the result, create new tasks to be completed by the AI system that do not overlap with result.\nReturn the tasks as an array."
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 950.292796637893,
|
||||
"y": 62.31864791878181
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 472,
|
||||
"id": "openAI_0",
|
||||
"position": {
|
||||
"x": 225.7603660247592,
|
||||
"y": -193.45016241085625
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "openAI_0",
|
||||
"label": "OpenAI",
|
||||
"name": "openAI",
|
||||
"type": "OpenAI",
|
||||
"baseClasses": ["OpenAI", "BaseLLM", "BaseLanguageModel"],
|
||||
"category": "LLMs",
|
||||
"description": "Wrapper around OpenAI large language models",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "OpenAI Api Key",
|
||||
"name": "openAIApiKey",
|
||||
"type": "password",
|
||||
"id": "openAI_0-input-openAIApiKey-password"
|
||||
},
|
||||
{
|
||||
"label": "Model Name",
|
||||
"name": "modelName",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "text-davinci-003",
|
||||
"name": "text-davinci-003"
|
||||
},
|
||||
{
|
||||
"label": "text-davinci-002",
|
||||
"name": "text-davinci-002"
|
||||
},
|
||||
{
|
||||
"label": "text-curie-001",
|
||||
"name": "text-curie-001"
|
||||
},
|
||||
{
|
||||
"label": "text-babbage-001",
|
||||
"name": "text-babbage-001"
|
||||
}
|
||||
],
|
||||
"default": "text-davinci-003",
|
||||
"optional": true,
|
||||
"id": "openAI_0-input-modelName-options"
|
||||
},
|
||||
{
|
||||
"label": "Temperature",
|
||||
"name": "temperature",
|
||||
"type": "number",
|
||||
"default": 0.7,
|
||||
"optional": true,
|
||||
"id": "openAI_0-input-temperature-number"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"modelName": "text-davinci-003",
|
||||
"temperature": "0"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "openAI_0-output-openAI-OpenAI|BaseLLM|BaseLanguageModel",
|
||||
"name": "openAI",
|
||||
"label": "OpenAI",
|
||||
"type": "OpenAI | BaseLLM | BaseLanguageModel"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"dragging": false,
|
||||
"positionAbsolute": {
|
||||
"x": 225.7603660247592,
|
||||
"y": -193.45016241085625
|
||||
}
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 472,
|
||||
"id": "openAI_1",
|
||||
"position": {
|
||||
"x": 1275.7643968219816,
|
||||
"y": -197.07668364123862
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "openAI_1",
|
||||
"label": "OpenAI",
|
||||
"name": "openAI",
|
||||
"type": "OpenAI",
|
||||
"baseClasses": ["OpenAI", "BaseLLM", "BaseLanguageModel"],
|
||||
"category": "LLMs",
|
||||
"description": "Wrapper around OpenAI large language models",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "OpenAI Api Key",
|
||||
"name": "openAIApiKey",
|
||||
"type": "password",
|
||||
"id": "openAI_0-input-openAIApiKey-password"
|
||||
},
|
||||
{
|
||||
"label": "Model Name",
|
||||
"name": "modelName",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "text-davinci-003",
|
||||
"name": "text-davinci-003"
|
||||
},
|
||||
{
|
||||
"label": "text-davinci-002",
|
||||
"name": "text-davinci-002"
|
||||
},
|
||||
{
|
||||
"label": "text-curie-001",
|
||||
"name": "text-curie-001"
|
||||
},
|
||||
{
|
||||
"label": "text-babbage-001",
|
||||
"name": "text-babbage-001"
|
||||
}
|
||||
],
|
||||
"default": "text-davinci-003",
|
||||
"optional": true,
|
||||
"id": "openAI_0-input-modelName-options"
|
||||
},
|
||||
{
|
||||
"label": "Temperature",
|
||||
"name": "temperature",
|
||||
"type": "number",
|
||||
"default": 0.7,
|
||||
"optional": true,
|
||||
"id": "openAI_0-input-temperature-number"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"modelName": "text-davinci-003",
|
||||
"temperature": "0"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "openAI_0-output-openAI-OpenAI|BaseLLM|BaseLanguageModel",
|
||||
"name": "openAI",
|
||||
"label": "OpenAI",
|
||||
"type": "OpenAI | BaseLLM | BaseLanguageModel"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"dragging": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1275.7643968219816,
|
||||
"y": -197.07668364123862
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"source": "promptTemplate_0",
|
||||
"sourceHandle": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_0",
|
||||
"targetHandle": "llmChain_0-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_0-promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_0-llmChain_0-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "openAI_0",
|
||||
"sourceHandle": "openAI_0-output-openAI-OpenAI|BaseLLM|BaseLanguageModel",
|
||||
"target": "llmChain_0",
|
||||
"targetHandle": "llmChain_0-input-model-BaseLanguageModel",
|
||||
"type": "buttonedge",
|
||||
"id": "openAI_0-openAI_0-output-openAI-OpenAI|BaseLLM|BaseLanguageModel-llmChain_0-llmChain_0-input-model-BaseLanguageModel",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "promptTemplate_1",
|
||||
"sourceHandle": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_1-promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_1-llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "llmChain_0",
|
||||
"sourceHandle": "llmChain_0-output-outputPrediction-string",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-promptValues-string",
|
||||
"type": "buttonedge",
|
||||
"id": "llmChain_0-llmChain_0-output-outputPrediction-string-llmChain_1-llmChain_1-input-promptValues-string",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "openAI_1",
|
||||
"sourceHandle": "openAI_0-output-openAI-OpenAI|BaseLLM|BaseLanguageModel",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-model-BaseLanguageModel",
|
||||
"type": "buttonedge",
|
||||
"id": "openAI_1-openAI_0-output-openAI-OpenAI|BaseLLM|BaseLanguageModel-llmChain_1-llmChain_1-input-model-BaseLanguageModel",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
@ -81,7 +81,7 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 360,
|
||||
"height": 366,
|
||||
"id": "promptTemplate_0",
|
||||
"position": {
|
||||
"x": 970.576876549135,
|
||||
|
|
@ -128,11 +128,11 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 461,
|
||||
"height": 592,
|
||||
"id": "llmChain_0",
|
||||
"position": {
|
||||
"x": 1414.1175742139496,
|
||||
"y": 340.4040954840462
|
||||
"x": 1386.5063477084716,
|
||||
"y": 211.47670100294192
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -144,13 +144,24 @@
|
|||
"category": "Chains",
|
||||
"description": "Chain to run queries against LLMs",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Chain Name",
|
||||
"name": "chainName",
|
||||
"type": "string",
|
||||
"placeholder": "Task Creation Chain",
|
||||
"optional": true,
|
||||
"id": "llmChain_0-input-chainName-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 5,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "llmChain_0-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
|
|
@ -170,38 +181,45 @@
|
|||
"inputs": {
|
||||
"model": "{{openAI_0.data.instance}}",
|
||||
"prompt": "{{promptTemplate_0.data.instance}}",
|
||||
"chainName": "CompanyName Chain",
|
||||
"promptValues": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "llmChain_0-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLMChain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "llmChain_0-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLM Chain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_0-output-outputPrediction-string",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "llmChain"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1414.1175742139496,
|
||||
"y": 340.4040954840462
|
||||
"x": 1386.5063477084716,
|
||||
"y": 211.47670100294192
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"source": "promptTemplate_0",
|
||||
"sourceHandle": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_0",
|
||||
"targetHandle": "llmChain_0-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_0-promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_0-llmChain_0-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "openAI_0",
|
||||
"sourceHandle": "openAI_0-output-openAI-OpenAI|BaseLLM|BaseLanguageModel",
|
||||
|
|
@ -212,6 +230,17 @@
|
|||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "promptTemplate_0",
|
||||
"sourceHandle": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_0",
|
||||
"targetHandle": "llmChain_0-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_0-promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_0-llmChain_0-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,13 +1,14 @@
|
|||
{
|
||||
"description": "Language translation using LLM Chain with a Chat Prompt Template and Chat Model",
|
||||
|
||||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 460,
|
||||
"height": 473,
|
||||
"id": "chatPromptTemplate_0",
|
||||
"position": {
|
||||
"x": 524,
|
||||
"y": 237
|
||||
"x": 906.3845860429262,
|
||||
"y": 522.7223115041937
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -52,8 +53,8 @@
|
|||
"selected": false,
|
||||
"dragging": false,
|
||||
"positionAbsolute": {
|
||||
"x": 524,
|
||||
"y": 237
|
||||
"x": 906.3845860429262,
|
||||
"y": 522.7223115041937
|
||||
}
|
||||
},
|
||||
{
|
||||
|
|
@ -61,8 +62,8 @@
|
|||
"height": 472,
|
||||
"id": "chatOpenAI_0",
|
||||
"position": {
|
||||
"x": 855.1997276913991,
|
||||
"y": 24.090553068402556
|
||||
"x": 909.2168811101023,
|
||||
"y": 10.159813502526418
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -133,18 +134,18 @@
|
|||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 855.1997276913991,
|
||||
"y": 24.090553068402556
|
||||
"x": 909.2168811101023,
|
||||
"y": 10.159813502526418
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 461,
|
||||
"height": 592,
|
||||
"id": "llmChain_0",
|
||||
"position": {
|
||||
"x": 1192.2235692202612,
|
||||
"y": 361.71736677076257
|
||||
"x": 1318.8661313433918,
|
||||
"y": 323.51085023894643
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -156,13 +157,24 @@
|
|||
"category": "Chains",
|
||||
"description": "Chain to run queries against LLMs",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Chain Name",
|
||||
"name": "chainName",
|
||||
"type": "string",
|
||||
"placeholder": "Task Creation Chain",
|
||||
"optional": true,
|
||||
"id": "llmChain_0-input-chainName-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 5,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "llmChain_0-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
|
|
@ -182,22 +194,40 @@
|
|||
"inputs": {
|
||||
"model": "{{chatOpenAI_0.data.instance}}",
|
||||
"prompt": "{{chatPromptTemplate_0.data.instance}}",
|
||||
"chainName": "",
|
||||
"promptValues": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "llmChain_0-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLMChain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "llmChain_0-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLM Chain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_0-output-outputPrediction-string",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "llmChain"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1192.2235692202612,
|
||||
"y": 361.71736677076257
|
||||
"x": 1318.8661313433918,
|
||||
"y": 323.51085023894643
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,9 +1,8 @@
|
|||
import { INodeData } from 'flowise-components'
|
||||
import { IActiveChatflows } from './Interface'
|
||||
import { IActiveChatflows, INodeData } from './Interface'
|
||||
|
||||
/**
|
||||
* This pool is to keep track of active test triggers (event listeners),
|
||||
* so we can clear the event listeners whenever user refresh or exit page
|
||||
* This pool is to keep track of active chatflow pools
|
||||
* so we can prevent building langchain flow all over again
|
||||
*/
|
||||
export class ChatflowPool {
|
||||
activeChatflows: IActiveChatflows = {}
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
import { INode, INodeData } from 'flowise-components'
|
||||
import { INode, INodeData as INodeDataFromComponent, INodeParams } from 'flowise-components'
|
||||
|
||||
export type MessageType = 'apiMessage' | 'userMessage'
|
||||
|
||||
|
|
@ -38,6 +38,12 @@ export interface INodeDirectedGraph {
|
|||
[key: string]: string[]
|
||||
}
|
||||
|
||||
export interface INodeData extends INodeDataFromComponent {
|
||||
inputAnchors: INodeParams[]
|
||||
inputParams: INodeParams[]
|
||||
outputAnchors: INodeParams[]
|
||||
}
|
||||
|
||||
export interface IReactFlowNode {
|
||||
id: string
|
||||
position: {
|
||||
|
|
|
|||
|
|
@ -4,15 +4,22 @@ import cors from 'cors'
|
|||
import http from 'http'
|
||||
import * as fs from 'fs'
|
||||
|
||||
import { IChatFlow, IncomingInput, IReactFlowNode, IReactFlowObject } from './Interface'
|
||||
import { getNodeModulesPackagePath, getStartingNodes, buildLangchain, getEndingNode, constructGraphs } from './utils'
|
||||
import { IChatFlow, IncomingInput, IReactFlowNode, IReactFlowObject, INodeData } from './Interface'
|
||||
import {
|
||||
getNodeModulesPackagePath,
|
||||
getStartingNodes,
|
||||
buildLangchain,
|
||||
getEndingNode,
|
||||
constructGraphs,
|
||||
resolveVariables,
|
||||
checkIfFlowNeedToRebuild
|
||||
} from './utils'
|
||||
import { cloneDeep } from 'lodash'
|
||||
import { getDataSource } from './DataSource'
|
||||
import { NodesPool } from './NodesPool'
|
||||
import { ChatFlow } from './entity/ChatFlow'
|
||||
import { ChatMessage } from './entity/ChatMessage'
|
||||
import { ChatflowPool } from './ChatflowPool'
|
||||
import { INodeData } from 'flowise-components'
|
||||
|
||||
export class App {
|
||||
app: express.Application
|
||||
|
|
@ -196,44 +203,61 @@ export class App {
|
|||
|
||||
let nodeToExecuteData: INodeData
|
||||
|
||||
const chatflow = await this.AppDataSource.getRepository(ChatFlow).findOneBy({
|
||||
id: chatflowid
|
||||
})
|
||||
if (!chatflow) return res.status(404).send(`Chatflow ${chatflowid} not found`)
|
||||
|
||||
const flowData = chatflow.flowData
|
||||
const parsedFlowData: IReactFlowObject = JSON.parse(flowData)
|
||||
const nodes = parsedFlowData.nodes
|
||||
const edges = parsedFlowData.edges
|
||||
|
||||
// Check if node data exists in pool && not out of sync, prevent building whole flow again
|
||||
if (
|
||||
Object.prototype.hasOwnProperty.call(this.chatflowPool.activeChatflows, chatflowid) &&
|
||||
this.chatflowPool.activeChatflows[chatflowid].inSync
|
||||
this.chatflowPool.activeChatflows[chatflowid].inSync &&
|
||||
!checkIfFlowNeedToRebuild(nodes, this.chatflowPool.activeChatflows[chatflowid].endingNodeData)
|
||||
) {
|
||||
nodeToExecuteData = this.chatflowPool.activeChatflows[chatflowid].endingNodeData
|
||||
} else {
|
||||
const chatflow = await this.AppDataSource.getRepository(ChatFlow).findOneBy({
|
||||
id: chatflowid
|
||||
})
|
||||
if (!chatflow) return res.status(404).send(`Chatflow ${chatflowid} not found`)
|
||||
|
||||
const flowData = chatflow.flowData
|
||||
const parsedFlowData: IReactFlowObject = JSON.parse(flowData)
|
||||
|
||||
/*** Get Ending Node with Directed Graph ***/
|
||||
const { graph, nodeDependencies } = constructGraphs(parsedFlowData.nodes, parsedFlowData.edges)
|
||||
const { graph, nodeDependencies } = constructGraphs(nodes, edges)
|
||||
const directedGraph = graph
|
||||
const endingNodeId = getEndingNode(nodeDependencies, directedGraph)
|
||||
if (!endingNodeId) return res.status(500).send(`Ending node must be either a Chain or Agent`)
|
||||
|
||||
const endingNodeData = nodes.find((nd) => nd.id === endingNodeId)?.data
|
||||
if (!endingNodeData) return res.status(500).send(`Ending node must be either a Chain or Agent`)
|
||||
|
||||
if (!Object.values(endingNodeData.outputs ?? {}).includes(endingNodeData.name)) {
|
||||
return res
|
||||
.status(500)
|
||||
.send(
|
||||
`Output of ${endingNodeData.label} (${endingNodeData.id}) must be ${endingNodeData.label}, can't be an Output Prediction`
|
||||
)
|
||||
}
|
||||
|
||||
/*** Get Starting Nodes with Non-Directed Graph ***/
|
||||
const constructedObj = constructGraphs(parsedFlowData.nodes, parsedFlowData.edges, true)
|
||||
const constructedObj = constructGraphs(nodes, edges, true)
|
||||
const nonDirectedGraph = constructedObj.graph
|
||||
const { startingNodeIds, depthQueue } = getStartingNodes(nonDirectedGraph, endingNodeId)
|
||||
|
||||
/*** BFS to traverse from Starting Nodes to Ending Node ***/
|
||||
const reactFlowNodes = await buildLangchain(
|
||||
startingNodeIds,
|
||||
parsedFlowData.nodes,
|
||||
nodes,
|
||||
graph,
|
||||
depthQueue,
|
||||
this.nodesPool.componentNodes
|
||||
this.nodesPool.componentNodes,
|
||||
incomingInput.question
|
||||
)
|
||||
|
||||
const nodeToExecute = reactFlowNodes.find((node: IReactFlowNode) => node.id === endingNodeId)
|
||||
if (!nodeToExecute) return res.status(404).send(`Node ${endingNodeId} not found`)
|
||||
|
||||
nodeToExecuteData = nodeToExecute.data
|
||||
const reactFlowNodeData: INodeData = resolveVariables(nodeToExecute.data, reactFlowNodes, incomingInput.question)
|
||||
nodeToExecuteData = reactFlowNodeData
|
||||
|
||||
this.chatflowPool.add(chatflowid, nodeToExecuteData)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -8,10 +8,14 @@ import {
|
|||
INodeDirectedGraph,
|
||||
INodeQueue,
|
||||
IReactFlowEdge,
|
||||
IReactFlowNode
|
||||
IReactFlowNode,
|
||||
IVariableDict,
|
||||
INodeData
|
||||
} from '../Interface'
|
||||
import { cloneDeep, get } from 'lodash'
|
||||
import { ICommonObject, INodeData } from 'flowise-components'
|
||||
import { ICommonObject } from 'flowise-components'
|
||||
|
||||
const QUESTION_VAR_PREFIX = 'question'
|
||||
|
||||
/**
|
||||
* Returns the home folder path of the user if
|
||||
|
|
@ -166,13 +170,15 @@ export const getEndingNode = (nodeDependencies: INodeDependencies, graph: INodeD
|
|||
* @param {INodeDirectedGraph} graph
|
||||
* @param {IDepthQueue} depthQueue
|
||||
* @param {IComponentNodes} componentNodes
|
||||
* @param {string} question
|
||||
*/
|
||||
export const buildLangchain = async (
|
||||
startingNodeIds: string[],
|
||||
reactFlowNodes: IReactFlowNode[],
|
||||
graph: INodeDirectedGraph,
|
||||
depthQueue: IDepthQueue,
|
||||
componentNodes: IComponentNodes
|
||||
componentNodes: IComponentNodes,
|
||||
question: string
|
||||
) => {
|
||||
const flowNodes = cloneDeep(reactFlowNodes)
|
||||
|
||||
|
|
@ -200,9 +206,9 @@ export const buildLangchain = async (
|
|||
const nodeModule = await import(nodeInstanceFilePath)
|
||||
const newNodeInstance = new nodeModule.nodeClass()
|
||||
|
||||
const reactFlowNodeData: INodeData = resolveVariables(reactFlowNode.data, flowNodes)
|
||||
const reactFlowNodeData: INodeData = resolveVariables(reactFlowNode.data, flowNodes, question)
|
||||
|
||||
flowNodes[nodeIndex].data.instance = await newNodeInstance.init(reactFlowNodeData)
|
||||
flowNodes[nodeIndex].data.instance = await newNodeInstance.init(reactFlowNodeData, question)
|
||||
} catch (e: any) {
|
||||
console.error(e)
|
||||
throw new Error(e)
|
||||
|
|
@ -247,11 +253,14 @@ export const buildLangchain = async (
|
|||
* Get variable value from outputResponses.output
|
||||
* @param {string} paramValue
|
||||
* @param {IReactFlowNode[]} reactFlowNodes
|
||||
* @param {string} question
|
||||
* @param {boolean} isAcceptVariable
|
||||
* @returns {string}
|
||||
*/
|
||||
export const getVariableValue = (paramValue: string, reactFlowNodes: IReactFlowNode[]) => {
|
||||
export const getVariableValue = (paramValue: string, reactFlowNodes: IReactFlowNode[], question: string, isAcceptVariable = false) => {
|
||||
let returnVal = paramValue
|
||||
const variableStack = []
|
||||
const variableDict = {} as IVariableDict
|
||||
let startIdx = 0
|
||||
const endIdx = returnVal.length - 1
|
||||
|
||||
|
|
@ -269,17 +278,36 @@ export const getVariableValue = (paramValue: string, reactFlowNodes: IReactFlowN
|
|||
const variableEndIdx = startIdx
|
||||
const variableFullPath = returnVal.substring(variableStartIdx, variableEndIdx)
|
||||
|
||||
if (isAcceptVariable && variableFullPath === QUESTION_VAR_PREFIX) {
|
||||
variableDict[`{{${variableFullPath}}}`] = question
|
||||
}
|
||||
|
||||
// Split by first occurence of '.' to get just nodeId
|
||||
const [variableNodeId, _] = variableFullPath.split('.')
|
||||
const executedNode = reactFlowNodes.find((nd) => nd.id === variableNodeId)
|
||||
if (executedNode) {
|
||||
const variableInstance = get(executedNode.data, 'instance')
|
||||
returnVal = variableInstance
|
||||
const variableValue = get(executedNode.data, 'instance')
|
||||
if (isAcceptVariable) {
|
||||
variableDict[`{{${variableFullPath}}}`] = variableValue
|
||||
} else {
|
||||
returnVal = variableValue
|
||||
}
|
||||
}
|
||||
variableStack.pop()
|
||||
}
|
||||
startIdx += 1
|
||||
}
|
||||
|
||||
if (isAcceptVariable) {
|
||||
const variablePaths = Object.keys(variableDict)
|
||||
variablePaths.sort() // Sort by length of variable path because longer path could possibly contains nested variable
|
||||
variablePaths.forEach((path) => {
|
||||
const variableValue = variableDict[path]
|
||||
// Replace all occurence
|
||||
returnVal = returnVal.split(path).join(variableValue)
|
||||
})
|
||||
return returnVal
|
||||
}
|
||||
return returnVal
|
||||
}
|
||||
|
||||
|
|
@ -287,25 +315,26 @@ export const getVariableValue = (paramValue: string, reactFlowNodes: IReactFlowN
|
|||
* Loop through each inputs and resolve variable if neccessary
|
||||
* @param {INodeData} reactFlowNodeData
|
||||
* @param {IReactFlowNode[]} reactFlowNodes
|
||||
* @param {string} question
|
||||
* @returns {INodeData}
|
||||
*/
|
||||
export const resolveVariables = (reactFlowNodeData: INodeData, reactFlowNodes: IReactFlowNode[]): INodeData => {
|
||||
export const resolveVariables = (reactFlowNodeData: INodeData, reactFlowNodes: IReactFlowNode[], question: string): INodeData => {
|
||||
const flowNodeData = cloneDeep(reactFlowNodeData)
|
||||
const types = 'inputs'
|
||||
|
||||
const getParamValues = (paramsObj: ICommonObject) => {
|
||||
for (const key in paramsObj) {
|
||||
const paramValue: string = paramsObj[key]
|
||||
|
||||
if (Array.isArray(paramValue)) {
|
||||
const resolvedInstances = []
|
||||
for (const param of paramValue) {
|
||||
const resolvedInstance = getVariableValue(param, reactFlowNodes)
|
||||
const resolvedInstance = getVariableValue(param, reactFlowNodes, question)
|
||||
resolvedInstances.push(resolvedInstance)
|
||||
}
|
||||
paramsObj[key] = resolvedInstances
|
||||
} else {
|
||||
const resolvedInstance = getVariableValue(paramValue, reactFlowNodes)
|
||||
const isAcceptVariable = reactFlowNodeData.inputParams.find((param) => param.name === key)?.acceptVariable ?? false
|
||||
const resolvedInstance = getVariableValue(paramValue, reactFlowNodes, question, isAcceptVariable)
|
||||
paramsObj[key] = resolvedInstance
|
||||
}
|
||||
}
|
||||
|
|
@ -317,3 +346,24 @@ export const resolveVariables = (reactFlowNodeData: INodeData, reactFlowNodes: I
|
|||
|
||||
return flowNodeData
|
||||
}
|
||||
|
||||
/**
|
||||
* Rebuild flow if LLMChain has dependency on other chains
|
||||
* User Question => Prompt_0 => LLMChain_0 => Prompt-1 => LLMChain_1
|
||||
* @param {IReactFlowNode[]} nodes
|
||||
* @param {INodeData} nodeData
|
||||
* @returns {boolean}
|
||||
*/
|
||||
export const checkIfFlowNeedToRebuild = (nodes: IReactFlowNode[], nodeData: INodeData) => {
|
||||
if (nodeData.name !== 'llmChain') return false
|
||||
|
||||
const node = nodes.find((nd) => nd.id === nodeData.id)
|
||||
if (!node) throw new Error(`Node ${nodeData.id} not found`)
|
||||
|
||||
const inputs = node.data.inputs
|
||||
for (const key in inputs) {
|
||||
const isInputAcceptVariable = node.data.inputParams.find((param) => param.name === key)?.acceptVariable || false
|
||||
if (isInputAcceptVariable && inputs[key].includes('{{') && inputs[key].includes('}}')) return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,9 +1,12 @@
|
|||
import { createContext, useState } from 'react'
|
||||
import PropTypes from 'prop-types'
|
||||
import { getUniqueNodeId } from 'utils/genericHelper'
|
||||
import { cloneDeep } from 'lodash'
|
||||
|
||||
const initialValue = {
|
||||
reactFlowInstance: null,
|
||||
setReactFlowInstance: () => {},
|
||||
duplicateNode: () => {},
|
||||
deleteNode: () => {},
|
||||
deleteEdge: () => {}
|
||||
}
|
||||
|
|
@ -22,13 +25,53 @@ export const ReactFlowContext = ({ children }) => {
|
|||
reactFlowInstance.setEdges(reactFlowInstance.getEdges().filter((edge) => edge.id !== id))
|
||||
}
|
||||
|
||||
const duplicateNode = (id) => {
|
||||
const nodes = reactFlowInstance.getNodes()
|
||||
const originalNode = nodes.find((n) => n.id === id)
|
||||
if (originalNode) {
|
||||
const newNodeId = getUniqueNodeId(originalNode.data, nodes)
|
||||
const clonedNode = cloneDeep(originalNode)
|
||||
|
||||
const duplicatedNode = {
|
||||
...clonedNode,
|
||||
id: newNodeId,
|
||||
position: {
|
||||
x: clonedNode.position.x + 400,
|
||||
y: clonedNode.position.y
|
||||
},
|
||||
positionAbsolute: {
|
||||
x: clonedNode.positionAbsolute.x + 400,
|
||||
y: clonedNode.positionAbsolute.y
|
||||
},
|
||||
data: {
|
||||
...clonedNode.data,
|
||||
id: newNodeId
|
||||
},
|
||||
selected: false
|
||||
}
|
||||
|
||||
const dataKeys = ['inputParams', 'inputAnchors', 'outputAnchors']
|
||||
|
||||
for (const key of dataKeys) {
|
||||
for (const item of duplicatedNode.data[key]) {
|
||||
if (item.id) {
|
||||
item.id = item.id.replace(id, newNodeId)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
reactFlowInstance.setNodes([...nodes, duplicatedNode])
|
||||
}
|
||||
}
|
||||
|
||||
return (
|
||||
<flowContext.Provider
|
||||
value={{
|
||||
reactFlowInstance,
|
||||
setReactFlowInstance,
|
||||
deleteNode,
|
||||
deleteEdge
|
||||
deleteEdge,
|
||||
duplicateNode
|
||||
}}
|
||||
>
|
||||
{children}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,6 @@
|
|||
.editor__textarea {
|
||||
outline: 0;
|
||||
}
|
||||
.editor__textarea::placeholder {
|
||||
color: rgba(120, 120, 120, 0.5);
|
||||
}
|
||||
|
|
@ -0,0 +1,256 @@
|
|||
import { createPortal } from 'react-dom'
|
||||
import { useState, useEffect } from 'react'
|
||||
import { useSelector } from 'react-redux'
|
||||
import PropTypes from 'prop-types'
|
||||
import {
|
||||
Button,
|
||||
Dialog,
|
||||
DialogActions,
|
||||
DialogContent,
|
||||
Box,
|
||||
List,
|
||||
ListItemButton,
|
||||
ListItem,
|
||||
ListItemAvatar,
|
||||
ListItemText,
|
||||
Typography,
|
||||
Stack
|
||||
} from '@mui/material'
|
||||
import { useTheme } from '@mui/material/styles'
|
||||
import PerfectScrollbar from 'react-perfect-scrollbar'
|
||||
import { StyledButton } from 'ui-component/button/StyledButton'
|
||||
import { DarkCodeEditor } from 'ui-component/editor/DarkCodeEditor'
|
||||
import { LightCodeEditor } from 'ui-component/editor/LightCodeEditor'
|
||||
|
||||
import './EditPromptValuesDialog.css'
|
||||
import { baseURL } from 'store/constant'
|
||||
|
||||
const EditPromptValuesDialog = ({ show, dialogProps, onCancel, onConfirm }) => {
|
||||
const portalElement = document.getElementById('portal')
|
||||
|
||||
const theme = useTheme()
|
||||
const customization = useSelector((state) => state.customization)
|
||||
const languageType = 'json'
|
||||
|
||||
const [inputValue, setInputValue] = useState('')
|
||||
const [inputParam, setInputParam] = useState(null)
|
||||
const [textCursorPosition, setTextCursorPosition] = useState({})
|
||||
|
||||
useEffect(() => {
|
||||
if (dialogProps.value) setInputValue(dialogProps.value)
|
||||
if (dialogProps.inputParam) setInputParam(dialogProps.inputParam)
|
||||
|
||||
return () => {
|
||||
setInputValue('')
|
||||
setInputParam(null)
|
||||
setTextCursorPosition({})
|
||||
}
|
||||
}, [dialogProps])
|
||||
|
||||
const onMouseUp = (e) => {
|
||||
if (e.target && e.target.selectionEnd && e.target.value) {
|
||||
const cursorPosition = e.target.selectionEnd
|
||||
const textBeforeCursorPosition = e.target.value.substring(0, cursorPosition)
|
||||
const textAfterCursorPosition = e.target.value.substring(cursorPosition, e.target.value.length)
|
||||
const body = {
|
||||
textBeforeCursorPosition,
|
||||
textAfterCursorPosition
|
||||
}
|
||||
setTextCursorPosition(body)
|
||||
} else {
|
||||
setTextCursorPosition({})
|
||||
}
|
||||
}
|
||||
|
||||
const onSelectOutputResponseClick = (node, isUserQuestion = false) => {
|
||||
let variablePath = isUserQuestion ? `question` : `${node.id}.data.instance`
|
||||
if (textCursorPosition) {
|
||||
let newInput = ''
|
||||
if (textCursorPosition.textBeforeCursorPosition === undefined && textCursorPosition.textAfterCursorPosition === undefined)
|
||||
newInput = `${inputValue}${`{{${variablePath}}}`}`
|
||||
else newInput = `${textCursorPosition.textBeforeCursorPosition}{{${variablePath}}}${textCursorPosition.textAfterCursorPosition}`
|
||||
setInputValue(newInput)
|
||||
}
|
||||
}
|
||||
|
||||
const component = show ? (
|
||||
<Dialog open={show} fullWidth maxWidth='md' aria-labelledby='alert-dialog-title' aria-describedby='alert-dialog-description'>
|
||||
<DialogContent>
|
||||
<div style={{ display: 'flex', flexDirection: 'row' }}>
|
||||
{inputParam && inputParam.type === 'string' && (
|
||||
<div style={{ flex: 70 }}>
|
||||
<Typography sx={{ mb: 2, ml: 1 }} variant='h4'>
|
||||
{inputParam.label}
|
||||
</Typography>
|
||||
<PerfectScrollbar
|
||||
style={{
|
||||
border: '1px solid',
|
||||
borderColor: theme.palette.grey['500'],
|
||||
borderRadius: '12px',
|
||||
height: '100%',
|
||||
maxHeight: 'calc(100vh - 220px)',
|
||||
overflowX: 'hidden',
|
||||
backgroundColor: 'white'
|
||||
}}
|
||||
>
|
||||
{customization.isDarkMode ? (
|
||||
<DarkCodeEditor
|
||||
disabled={dialogProps.disabled}
|
||||
value={inputValue}
|
||||
onValueChange={(code) => setInputValue(code)}
|
||||
placeholder={inputParam.placeholder}
|
||||
type={languageType}
|
||||
onMouseUp={(e) => onMouseUp(e)}
|
||||
onBlur={(e) => onMouseUp(e)}
|
||||
style={{
|
||||
fontSize: '0.875rem',
|
||||
minHeight: 'calc(100vh - 220px)',
|
||||
width: '100%'
|
||||
}}
|
||||
/>
|
||||
) : (
|
||||
<LightCodeEditor
|
||||
disabled={dialogProps.disabled}
|
||||
value={inputValue}
|
||||
onValueChange={(code) => setInputValue(code)}
|
||||
placeholder={inputParam.placeholder}
|
||||
type={languageType}
|
||||
onMouseUp={(e) => onMouseUp(e)}
|
||||
onBlur={(e) => onMouseUp(e)}
|
||||
style={{
|
||||
fontSize: '0.875rem',
|
||||
minHeight: 'calc(100vh - 220px)',
|
||||
width: '100%'
|
||||
}}
|
||||
/>
|
||||
)}
|
||||
</PerfectScrollbar>
|
||||
</div>
|
||||
)}
|
||||
{!dialogProps.disabled && inputParam && inputParam.acceptVariable && (
|
||||
<div style={{ flex: 30 }}>
|
||||
<Stack flexDirection='row' sx={{ mb: 1, ml: 2 }}>
|
||||
<Typography variant='h4'>Select Variable</Typography>
|
||||
</Stack>
|
||||
<PerfectScrollbar style={{ height: '100%', maxHeight: 'calc(100vh - 220px)', overflowX: 'hidden' }}>
|
||||
<Box sx={{ pl: 2, pr: 2 }}>
|
||||
<List>
|
||||
<ListItemButton
|
||||
sx={{
|
||||
p: 0,
|
||||
borderRadius: `${customization.borderRadius}px`,
|
||||
boxShadow: '0 2px 14px 0 rgb(32 40 45 / 8%)',
|
||||
mb: 1
|
||||
}}
|
||||
disabled={dialogProps.disabled}
|
||||
onClick={() => onSelectOutputResponseClick(null, true)}
|
||||
>
|
||||
<ListItem alignItems='center'>
|
||||
<ListItemAvatar>
|
||||
<div
|
||||
style={{
|
||||
width: 50,
|
||||
height: 50,
|
||||
borderRadius: '50%',
|
||||
backgroundColor: 'white'
|
||||
}}
|
||||
>
|
||||
<img
|
||||
style={{
|
||||
width: '100%',
|
||||
height: '100%',
|
||||
padding: 10,
|
||||
objectFit: 'contain'
|
||||
}}
|
||||
alt='AI'
|
||||
src='https://raw.githubusercontent.com/zahidkhawaja/langchain-chat-nextjs/main/public/parroticon.png'
|
||||
/>
|
||||
</div>
|
||||
</ListItemAvatar>
|
||||
<ListItemText
|
||||
sx={{ ml: 1 }}
|
||||
primary='question'
|
||||
secondary={`User's question from chatbox`}
|
||||
/>
|
||||
</ListItem>
|
||||
</ListItemButton>
|
||||
{dialogProps.availableNodesForVariable &&
|
||||
dialogProps.availableNodesForVariable.length > 0 &&
|
||||
dialogProps.availableNodesForVariable.map((node, index) => {
|
||||
const selectedOutputAnchor = node.data.outputAnchors[0].options.find(
|
||||
(ancr) => ancr.name === node.data.outputs['output']
|
||||
)
|
||||
return (
|
||||
<ListItemButton
|
||||
key={index}
|
||||
sx={{
|
||||
p: 0,
|
||||
borderRadius: `${customization.borderRadius}px`,
|
||||
boxShadow: '0 2px 14px 0 rgb(32 40 45 / 8%)',
|
||||
mb: 1
|
||||
}}
|
||||
disabled={dialogProps.disabled}
|
||||
onClick={() => onSelectOutputResponseClick(node)}
|
||||
>
|
||||
<ListItem alignItems='center'>
|
||||
<ListItemAvatar>
|
||||
<div
|
||||
style={{
|
||||
width: 50,
|
||||
height: 50,
|
||||
borderRadius: '50%',
|
||||
backgroundColor: 'white'
|
||||
}}
|
||||
>
|
||||
<img
|
||||
style={{
|
||||
width: '100%',
|
||||
height: '100%',
|
||||
padding: 10,
|
||||
objectFit: 'contain'
|
||||
}}
|
||||
alt={node.data.name}
|
||||
src={`${baseURL}/api/v1/node-icon/${node.data.name}`}
|
||||
/>
|
||||
</div>
|
||||
</ListItemAvatar>
|
||||
<ListItemText
|
||||
sx={{ ml: 1 }}
|
||||
primary={
|
||||
node.data.inputs.chainName ? node.data.inputs.chainName : node.data.id
|
||||
}
|
||||
secondary={`${selectedOutputAnchor?.label ?? 'output'} from ${
|
||||
node.data.label
|
||||
}`}
|
||||
/>
|
||||
</ListItem>
|
||||
</ListItemButton>
|
||||
)
|
||||
})}
|
||||
</List>
|
||||
</Box>
|
||||
</PerfectScrollbar>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
</DialogContent>
|
||||
<DialogActions>
|
||||
<Button onClick={onCancel}>{dialogProps.cancelButtonName}</Button>
|
||||
<StyledButton disabled={dialogProps.disabled} variant='contained' onClick={() => onConfirm(inputValue, inputParam.name)}>
|
||||
{dialogProps.confirmButtonName}
|
||||
</StyledButton>
|
||||
</DialogActions>
|
||||
</Dialog>
|
||||
) : null
|
||||
|
||||
return createPortal(component, portalElement)
|
||||
}
|
||||
|
||||
EditPromptValuesDialog.propTypes = {
|
||||
show: PropTypes.bool,
|
||||
dialogProps: PropTypes.object,
|
||||
onCancel: PropTypes.func,
|
||||
onConfirm: PropTypes.func
|
||||
}
|
||||
|
||||
export default EditPromptValuesDialog
|
||||
|
|
@ -18,7 +18,7 @@ const StyledPopper = styled(Popper)({
|
|||
}
|
||||
})
|
||||
|
||||
export const Dropdown = ({ name, value, options, onSelect, disabled = false }) => {
|
||||
export const Dropdown = ({ name, value, options, onSelect, disabled = false, disableClearable = false }) => {
|
||||
const customization = useSelector((state) => state.customization)
|
||||
const findMatchingOptions = (options = [], value) => options.find((option) => option.name === value)
|
||||
const getDefaultOptionValue = () => ''
|
||||
|
|
@ -29,6 +29,7 @@ export const Dropdown = ({ name, value, options, onSelect, disabled = false }) =
|
|||
<Autocomplete
|
||||
id={name}
|
||||
disabled={disabled}
|
||||
disableClearable={disableClearable}
|
||||
size='small'
|
||||
options={options || []}
|
||||
value={findMatchingOptions(options, internalValue) || getDefaultOptionValue()}
|
||||
|
|
@ -59,5 +60,6 @@ Dropdown.propTypes = {
|
|||
value: PropTypes.string,
|
||||
options: PropTypes.array,
|
||||
onSelect: PropTypes.func,
|
||||
disabled: PropTypes.bool
|
||||
disabled: PropTypes.bool,
|
||||
disableClearable: PropTypes.bool
|
||||
}
|
||||
|
|
|
|||
|
|
@ -8,11 +8,12 @@ import './prism-dark.css'
|
|||
import PropTypes from 'prop-types'
|
||||
import { useTheme } from '@mui/material/styles'
|
||||
|
||||
export const DarkCodeEditor = ({ value, placeholder, type, style, onValueChange, onMouseUp, onBlur }) => {
|
||||
export const DarkCodeEditor = ({ value, placeholder, disabled = false, type, style, onValueChange, onMouseUp, onBlur }) => {
|
||||
const theme = useTheme()
|
||||
|
||||
return (
|
||||
<Editor
|
||||
disabled={disabled}
|
||||
value={value}
|
||||
placeholder={placeholder}
|
||||
highlight={(code) => highlight(code, type === 'json' ? languages.json : languages.js)}
|
||||
|
|
@ -32,6 +33,7 @@ export const DarkCodeEditor = ({ value, placeholder, type, style, onValueChange,
|
|||
DarkCodeEditor.propTypes = {
|
||||
value: PropTypes.string,
|
||||
placeholder: PropTypes.string,
|
||||
disabled: PropTypes.bool,
|
||||
type: PropTypes.string,
|
||||
style: PropTypes.object,
|
||||
onValueChange: PropTypes.func,
|
||||
|
|
|
|||
|
|
@ -8,11 +8,12 @@ import './prism-light.css'
|
|||
import PropTypes from 'prop-types'
|
||||
import { useTheme } from '@mui/material/styles'
|
||||
|
||||
export const LightCodeEditor = ({ value, placeholder, type, style, onValueChange, onMouseUp, onBlur }) => {
|
||||
export const LightCodeEditor = ({ value, placeholder, disabled = false, type, style, onValueChange, onMouseUp, onBlur }) => {
|
||||
const theme = useTheme()
|
||||
|
||||
return (
|
||||
<Editor
|
||||
disabled={disabled}
|
||||
value={value}
|
||||
placeholder={placeholder}
|
||||
highlight={(code) => highlight(code, type === 'json' ? languages.json : languages.js)}
|
||||
|
|
@ -32,6 +33,7 @@ export const LightCodeEditor = ({ value, placeholder, type, style, onValueChange
|
|||
LightCodeEditor.propTypes = {
|
||||
value: PropTypes.string,
|
||||
placeholder: PropTypes.string,
|
||||
disabled: PropTypes.bool,
|
||||
type: PropTypes.string,
|
||||
style: PropTypes.object,
|
||||
onValueChange: PropTypes.func,
|
||||
|
|
|
|||
|
|
@ -1,28 +1,53 @@
|
|||
import { useState } from 'react'
|
||||
import PropTypes from 'prop-types'
|
||||
import { FormControl, OutlinedInput } from '@mui/material'
|
||||
import EditPromptValuesDialog from 'ui-component/dialog/EditPromptValuesDialog'
|
||||
|
||||
export const Input = ({ inputParam, value, onChange, disabled = false }) => {
|
||||
export const Input = ({ inputParam, value, onChange, disabled = false, showDialog, dialogProps, onDialogCancel, onDialogConfirm }) => {
|
||||
const [myValue, setMyValue] = useState(value ?? '')
|
||||
|
||||
const getInputType = (type) => {
|
||||
switch (type) {
|
||||
case 'string':
|
||||
return 'text'
|
||||
case 'password':
|
||||
return 'password'
|
||||
case 'number':
|
||||
return 'number'
|
||||
default:
|
||||
return 'text'
|
||||
}
|
||||
}
|
||||
|
||||
return (
|
||||
<FormControl sx={{ mt: 1, width: '100%' }} size='small'>
|
||||
<OutlinedInput
|
||||
id={inputParam.name}
|
||||
size='small'
|
||||
disabled={disabled}
|
||||
type={inputParam.type === 'string' ? 'text' : inputParam.type}
|
||||
placeholder={inputParam.placeholder}
|
||||
multiline={!!inputParam.rows}
|
||||
maxRows={inputParam.rows || 0}
|
||||
minRows={inputParam.rows || 0}
|
||||
value={myValue}
|
||||
name={inputParam.name}
|
||||
onChange={(e) => {
|
||||
setMyValue(e.target.value)
|
||||
onChange(e.target.value)
|
||||
<>
|
||||
<FormControl sx={{ mt: 1, width: '100%' }} size='small'>
|
||||
<OutlinedInput
|
||||
id={inputParam.name}
|
||||
size='small'
|
||||
disabled={disabled}
|
||||
type={getInputType(inputParam.type)}
|
||||
placeholder={inputParam.placeholder}
|
||||
multiline={!!inputParam.rows}
|
||||
rows={inputParam.rows ?? 1}
|
||||
value={myValue}
|
||||
name={inputParam.name}
|
||||
onChange={(e) => {
|
||||
setMyValue(e.target.value)
|
||||
onChange(e.target.value)
|
||||
}}
|
||||
/>
|
||||
</FormControl>
|
||||
<EditPromptValuesDialog
|
||||
show={showDialog}
|
||||
dialogProps={dialogProps}
|
||||
onCancel={onDialogCancel}
|
||||
onConfirm={(newValue, inputParamName) => {
|
||||
setMyValue(newValue)
|
||||
onDialogConfirm(newValue, inputParamName)
|
||||
}}
|
||||
/>
|
||||
</FormControl>
|
||||
></EditPromptValuesDialog>
|
||||
</>
|
||||
)
|
||||
}
|
||||
|
||||
|
|
@ -30,5 +55,9 @@ Input.propTypes = {
|
|||
inputParam: PropTypes.object,
|
||||
value: PropTypes.string,
|
||||
onChange: PropTypes.func,
|
||||
disabled: PropTypes.bool
|
||||
disabled: PropTypes.bool,
|
||||
showDialog: PropTypes.bool,
|
||||
dialogProps: PropTypes.object,
|
||||
onDialogCancel: PropTypes.func,
|
||||
onDialogConfirm: PropTypes.func
|
||||
}
|
||||
|
|
|
|||
|
|
@ -9,13 +9,9 @@ export const TooltipWithParser = ({ title }) => {
|
|||
|
||||
return (
|
||||
<Tooltip title={parser(title)} placement='right'>
|
||||
<div style={{ display: 'flex', alignItems: 'center' }}>
|
||||
<IconButton sx={{ height: 25, width: 25 }}>
|
||||
<Info
|
||||
style={{ background: 'transparent', color: customization.isDarkMode ? 'white' : 'inherit', height: 18, width: 18 }}
|
||||
/>
|
||||
</IconButton>
|
||||
</div>
|
||||
<IconButton sx={{ height: 25, width: 25 }}>
|
||||
<Info style={{ background: 'transparent', color: customization.isDarkMode ? 'white' : 'inherit', height: 18, width: 18 }} />
|
||||
</IconButton>
|
||||
</Tooltip>
|
||||
)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -22,23 +22,12 @@ export const getUniqueNodeId = (nodeData, nodes) => {
|
|||
return nodeId
|
||||
}
|
||||
|
||||
export const initializeNodeData = (nodeParams) => {
|
||||
export const initializeDefaultNodeData = (nodeParams) => {
|
||||
const initialValues = {}
|
||||
|
||||
for (let i = 0; i < nodeParams.length; i += 1) {
|
||||
const input = nodeParams[i]
|
||||
|
||||
// Load from nodeParams default values
|
||||
initialValues[input.name] = input.default || ''
|
||||
|
||||
// Special case for array, always initialize the item if default is not set
|
||||
if (input.type === 'array' && !input.default) {
|
||||
const newObj = {}
|
||||
for (let j = 0; j < input.array.length; j += 1) {
|
||||
newObj[input.array[j].name] = input.array[j].default || ''
|
||||
}
|
||||
initialValues[input.name] = [newObj]
|
||||
}
|
||||
}
|
||||
|
||||
return initialValues
|
||||
|
|
@ -46,62 +35,118 @@ export const initializeNodeData = (nodeParams) => {
|
|||
|
||||
export const initNode = (nodeData, newNodeId) => {
|
||||
const inputAnchors = []
|
||||
const inputParams = []
|
||||
const incoming = nodeData.inputs ? nodeData.inputs.length : 0
|
||||
const outgoing = 1
|
||||
|
||||
const whitelistTypes = ['asyncOptions', 'options', 'string', 'number', 'boolean', 'password', 'json', 'code', 'date', 'file', 'folder']
|
||||
const whitelistTypes = ['options', 'string', 'number', 'boolean', 'password', 'json', 'code', 'date', 'file', 'folder']
|
||||
|
||||
for (let i = 0; i < incoming; i += 1) {
|
||||
if (whitelistTypes.includes(nodeData.inputs[i].type)) continue
|
||||
const newInput = {
|
||||
...nodeData.inputs[i],
|
||||
id: `${newNodeId}-input-${nodeData.inputs[i].name}-${nodeData.inputs[i].type}`
|
||||
}
|
||||
inputAnchors.push(newInput)
|
||||
if (whitelistTypes.includes(nodeData.inputs[i].type)) {
|
||||
inputParams.push(newInput)
|
||||
} else {
|
||||
inputAnchors.push(newInput)
|
||||
}
|
||||
}
|
||||
|
||||
const outputAnchors = []
|
||||
for (let i = 0; i < outgoing; i += 1) {
|
||||
const newOutput = {
|
||||
id: `${newNodeId}-output-${nodeData.name}-${nodeData.baseClasses.join('|')}`,
|
||||
name: nodeData.name,
|
||||
label: nodeData.type,
|
||||
type: nodeData.baseClasses.join(' | ')
|
||||
if (nodeData.outputs && nodeData.outputs.length) {
|
||||
const options = []
|
||||
for (let j = 0; j < nodeData.outputs.length; j += 1) {
|
||||
let baseClasses = ''
|
||||
let type = ''
|
||||
|
||||
if (whitelistTypes.includes(nodeData.outputs[j].type)) {
|
||||
baseClasses = nodeData.outputs[j].type
|
||||
type = nodeData.outputs[j].type
|
||||
} else {
|
||||
baseClasses = nodeData.baseClasses.join('|')
|
||||
type = nodeData.baseClasses.join(' | ')
|
||||
}
|
||||
|
||||
const newOutputOption = {
|
||||
id: `${newNodeId}-output-${nodeData.outputs[j].name}-${baseClasses}`,
|
||||
name: nodeData.outputs[j].name,
|
||||
label: nodeData.outputs[j].label,
|
||||
type
|
||||
}
|
||||
options.push(newOutputOption)
|
||||
}
|
||||
const newOutput = {
|
||||
name: 'output',
|
||||
label: 'Output',
|
||||
type: 'options',
|
||||
options,
|
||||
default: nodeData.outputs[0].name
|
||||
}
|
||||
outputAnchors.push(newOutput)
|
||||
} else {
|
||||
const newOutput = {
|
||||
id: `${newNodeId}-output-${nodeData.name}-${nodeData.baseClasses.join('|')}`,
|
||||
name: nodeData.name,
|
||||
label: nodeData.type,
|
||||
type: nodeData.baseClasses.join(' | ')
|
||||
}
|
||||
outputAnchors.push(newOutput)
|
||||
}
|
||||
outputAnchors.push(newOutput)
|
||||
}
|
||||
|
||||
nodeData.id = newNodeId
|
||||
nodeData.inputAnchors = inputAnchors
|
||||
nodeData.outputAnchors = outputAnchors
|
||||
|
||||
/*
|
||||
Initial inputs = [
|
||||
/* Initial
|
||||
inputs = [
|
||||
{
|
||||
label: 'field_label',
|
||||
name: 'field'
|
||||
label: 'field_label_1',
|
||||
name: 'string'
|
||||
},
|
||||
{
|
||||
label: 'field_label_2',
|
||||
name: 'CustomType'
|
||||
}
|
||||
]
|
||||
|
||||
// Turn into inputs object with default values
|
||||
Converted inputs = { 'field': 'defaultvalue' }
|
||||
=> Convert to inputs, inputParams, inputAnchors
|
||||
|
||||
=> inputs = { 'field': 'defaultvalue' } // Turn into inputs object with default values
|
||||
|
||||
// Move remaining inputs that are not part of inputAnchors to inputParams
|
||||
inputParams = [
|
||||
{
|
||||
label: 'field_label',
|
||||
name: 'field'
|
||||
}
|
||||
]
|
||||
=> // For inputs that are part of whitelistTypes
|
||||
inputParams = [
|
||||
{
|
||||
label: 'field_label_1',
|
||||
name: 'string'
|
||||
}
|
||||
]
|
||||
|
||||
=> // For inputs that are not part of whitelistTypes
|
||||
inputAnchors = [
|
||||
{
|
||||
label: 'field_label_2',
|
||||
name: 'CustomType'
|
||||
}
|
||||
]
|
||||
*/
|
||||
if (nodeData.inputs) {
|
||||
nodeData.inputParams = nodeData.inputs.filter(({ name }) => !nodeData.inputAnchors.some((exclude) => exclude.name === name))
|
||||
nodeData.inputs = initializeNodeData(nodeData.inputs)
|
||||
nodeData.inputAnchors = inputAnchors
|
||||
nodeData.inputParams = inputParams
|
||||
nodeData.inputs = initializeDefaultNodeData(nodeData.inputs)
|
||||
} else {
|
||||
nodeData.inputAnchors = []
|
||||
nodeData.inputParams = []
|
||||
nodeData.inputs = {}
|
||||
}
|
||||
|
||||
if (nodeData.outputs) {
|
||||
nodeData.outputs = initializeDefaultNodeData(outputAnchors)
|
||||
} else {
|
||||
nodeData.outputs = {}
|
||||
}
|
||||
|
||||
nodeData.outputAnchors = outputAnchors
|
||||
nodeData.id = newNodeId
|
||||
|
||||
return nodeData
|
||||
}
|
||||
|
||||
|
|
@ -133,7 +178,9 @@ export const isValidConnection = (connection, reactFlowInstance) => {
|
|||
return true
|
||||
}
|
||||
} else {
|
||||
const targetNodeInputAnchor = targetNode.data.inputAnchors.find((ancr) => ancr.id === targetHandle)
|
||||
const targetNodeInputAnchor =
|
||||
targetNode.data.inputAnchors.find((ancr) => ancr.id === targetHandle) ||
|
||||
targetNode.data.inputParams.find((ancr) => ancr.id === targetHandle)
|
||||
if (
|
||||
(targetNodeInputAnchor &&
|
||||
!targetNodeInputAnchor?.list &&
|
||||
|
|
@ -144,7 +191,6 @@ export const isValidConnection = (connection, reactFlowInstance) => {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
|
|
@ -200,6 +246,7 @@ export const generateExportFlowData = (flowData) => {
|
|||
inputAnchors: node.data.inputAnchors,
|
||||
inputs: {},
|
||||
outputAnchors: node.data.outputAnchors,
|
||||
outputs: node.data.outputs,
|
||||
selected: false
|
||||
}
|
||||
|
||||
|
|
@ -225,11 +272,16 @@ export const generateExportFlowData = (flowData) => {
|
|||
return exportJson
|
||||
}
|
||||
|
||||
export const copyToClipboard = (e) => {
|
||||
const src = e.src
|
||||
if (Array.isArray(src) || typeof src === 'object') {
|
||||
navigator.clipboard.writeText(JSON.stringify(src, null, ' '))
|
||||
} else {
|
||||
navigator.clipboard.writeText(src)
|
||||
export const getAvailableNodesForVariable = (nodes, edges, target, targetHandle) => {
|
||||
// example edge id = "llmChain_0-llmChain_0-output-outputPrediction-string-llmChain_1-llmChain_1-input-promptValues-string"
|
||||
// {source} -{sourceHandle} -{target} -{targetHandle}
|
||||
const parentNodes = []
|
||||
const inputEdges = edges.filter((edg) => edg.target === target && edg.targetHandle === targetHandle)
|
||||
if (inputEdges && inputEdges.length) {
|
||||
for (let j = 0; j < inputEdges.length; j += 1) {
|
||||
const node = nodes.find((nd) => nd.id === inputEdges[j].source)
|
||||
parentNodes.push(node)
|
||||
}
|
||||
}
|
||||
return parentNodes
|
||||
}
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ import NodeOutputHandler from './NodeOutputHandler'
|
|||
|
||||
// const
|
||||
import { baseURL } from 'store/constant'
|
||||
import { IconTrash } from '@tabler/icons'
|
||||
import { IconTrash, IconCopy } from '@tabler/icons'
|
||||
import { flowContext } from 'store/context/ReactFlowContext'
|
||||
|
||||
const CardWrapper = styled(MainCard)(({ theme }) => ({
|
||||
|
|
@ -33,7 +33,7 @@ const CardWrapper = styled(MainCard)(({ theme }) => ({
|
|||
|
||||
const CanvasNode = ({ data }) => {
|
||||
const theme = useTheme()
|
||||
const { deleteNode } = useContext(flowContext)
|
||||
const { deleteNode, duplicateNode } = useContext(flowContext)
|
||||
|
||||
return (
|
||||
<>
|
||||
|
|
@ -76,10 +76,22 @@ const CanvasNode = ({ data }) => {
|
|||
</Box>
|
||||
<div style={{ flexGrow: 1 }}></div>
|
||||
<IconButton
|
||||
title='Duplicate'
|
||||
onClick={() => {
|
||||
duplicateNode(data.id)
|
||||
}}
|
||||
sx={{ height: 35, width: 35, '&:hover': { color: theme?.palette.primary.main } }}
|
||||
color={theme?.customization?.isDarkMode ? theme.colors?.paper : 'inherit'}
|
||||
>
|
||||
<IconCopy />
|
||||
</IconButton>
|
||||
<IconButton
|
||||
title='Delete'
|
||||
onClick={() => {
|
||||
deleteNode(data.id)
|
||||
}}
|
||||
sx={{ height: 35, width: 35, mr: 1 }}
|
||||
sx={{ height: 35, width: 35, mr: 1, '&:hover': { color: 'red' } }}
|
||||
color={theme?.customization?.isDarkMode ? theme.colors?.paper : 'inherit'}
|
||||
>
|
||||
<IconTrash />
|
||||
</IconButton>
|
||||
|
|
|
|||
|
|
@ -4,13 +4,16 @@ import { useEffect, useRef, useState, useContext } from 'react'
|
|||
|
||||
// material-ui
|
||||
import { useTheme, styled } from '@mui/material/styles'
|
||||
import { Box, Typography, Tooltip } from '@mui/material'
|
||||
import { Box, Typography, Tooltip, IconButton } from '@mui/material'
|
||||
import { tooltipClasses } from '@mui/material/Tooltip'
|
||||
import { IconArrowsMaximize } from '@tabler/icons'
|
||||
|
||||
// project import
|
||||
import { Dropdown } from 'ui-component/dropdown/Dropdown'
|
||||
import { Input } from 'ui-component/input/Input'
|
||||
import { File } from 'ui-component/file/File'
|
||||
import { flowContext } from 'store/context/ReactFlowContext'
|
||||
import { isValidConnection } from 'utils/genericHelper'
|
||||
import { isValidConnection, getAvailableNodesForVariable } from 'utils/genericHelper'
|
||||
|
||||
const CustomWidthTooltip = styled(({ className, ...props }) => <Tooltip {...props} classes={{ popper: className }} />)({
|
||||
[`& .${tooltipClasses.tooltip}`]: {
|
||||
|
|
@ -23,9 +26,35 @@ const CustomWidthTooltip = styled(({ className, ...props }) => <Tooltip {...prop
|
|||
const NodeInputHandler = ({ inputAnchor, inputParam, data, disabled = false }) => {
|
||||
const theme = useTheme()
|
||||
const ref = useRef(null)
|
||||
const { reactFlowInstance } = useContext(flowContext)
|
||||
const updateNodeInternals = useUpdateNodeInternals()
|
||||
const [position, setPosition] = useState(0)
|
||||
const { reactFlowInstance } = useContext(flowContext)
|
||||
const [showExpandDialog, setShowExpandDialog] = useState(false)
|
||||
const [expandDialogProps, setExpandDialogProps] = useState({})
|
||||
|
||||
const onExpandDialogClicked = (value, inputParam) => {
|
||||
const dialogProp = {
|
||||
value,
|
||||
inputParam,
|
||||
disabled,
|
||||
confirmButtonName: 'Save',
|
||||
cancelButtonName: 'Cancel'
|
||||
}
|
||||
|
||||
if (!disabled) {
|
||||
const nodes = reactFlowInstance.getNodes()
|
||||
const edges = reactFlowInstance.getEdges()
|
||||
const nodesForVariable = inputParam.acceptVariable ? getAvailableNodesForVariable(nodes, edges, data.id, inputParam.id) : []
|
||||
dialogProp.availableNodesForVariable = nodesForVariable
|
||||
}
|
||||
setExpandDialogProps(dialogProp)
|
||||
setShowExpandDialog(true)
|
||||
}
|
||||
|
||||
const onExpandDialogSave = (newValue, inputParamName) => {
|
||||
setShowExpandDialog(false)
|
||||
data.inputs[inputParamName] = newValue
|
||||
}
|
||||
|
||||
useEffect(() => {
|
||||
if (ref.current && ref.current.offsetTop && ref.current.clientHeight) {
|
||||
|
|
@ -68,11 +97,47 @@ const NodeInputHandler = ({ inputAnchor, inputParam, data, disabled = false }) =
|
|||
|
||||
{inputParam && (
|
||||
<>
|
||||
{inputParam.acceptVariable && (
|
||||
<CustomWidthTooltip placement='left' title={inputParam.type}>
|
||||
<Handle
|
||||
type='target'
|
||||
position={Position.Left}
|
||||
key={inputParam.id}
|
||||
id={inputParam.id}
|
||||
isValidConnection={(connection) => isValidConnection(connection, reactFlowInstance)}
|
||||
style={{
|
||||
height: 10,
|
||||
width: 10,
|
||||
backgroundColor: data.selected ? theme.palette.primary.main : theme.palette.text.secondary,
|
||||
top: position
|
||||
}}
|
||||
/>
|
||||
</CustomWidthTooltip>
|
||||
)}
|
||||
<Box sx={{ p: 2 }}>
|
||||
<Typography>
|
||||
{inputParam.label}
|
||||
{!inputParam.optional && <span style={{ color: 'red' }}> *</span>}
|
||||
</Typography>
|
||||
<div style={{ display: 'flex', flexDirection: 'row' }}>
|
||||
<Typography>
|
||||
{inputParam.label}
|
||||
{!inputParam.optional && <span style={{ color: 'red' }}> *</span>}
|
||||
</Typography>
|
||||
<div style={{ flexGrow: 1 }}></div>
|
||||
{inputParam.type === 'string' && inputParam.rows && (
|
||||
<IconButton
|
||||
size='small'
|
||||
sx={{
|
||||
height: 25,
|
||||
width: 25
|
||||
}}
|
||||
title='Expand'
|
||||
color='primary'
|
||||
onClick={() =>
|
||||
onExpandDialogClicked(data.inputs[inputParam.name] ?? inputParam.default ?? '', inputParam)
|
||||
}
|
||||
>
|
||||
<IconArrowsMaximize />
|
||||
</IconButton>
|
||||
)}
|
||||
</div>
|
||||
{inputParam.type === 'file' && (
|
||||
<File
|
||||
disabled={disabled}
|
||||
|
|
@ -87,6 +152,10 @@ const NodeInputHandler = ({ inputAnchor, inputParam, data, disabled = false }) =
|
|||
inputParam={inputParam}
|
||||
onChange={(newValue) => (data.inputs[inputParam.name] = newValue)}
|
||||
value={data.inputs[inputParam.name] ?? inputParam.default ?? ''}
|
||||
showDialog={showExpandDialog}
|
||||
dialogProps={expandDialogProps}
|
||||
onDialogCancel={() => setShowExpandDialog(false)}
|
||||
onDialogConfirm={(newValue, inputParamName) => onExpandDialogSave(newValue, inputParamName)}
|
||||
/>
|
||||
)}
|
||||
{inputParam.type === 'options' && (
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ import { Box, Typography, Tooltip } from '@mui/material'
|
|||
import { tooltipClasses } from '@mui/material/Tooltip'
|
||||
import { flowContext } from 'store/context/ReactFlowContext'
|
||||
import { isValidConnection } from 'utils/genericHelper'
|
||||
import { Dropdown } from 'ui-component/dropdown/Dropdown'
|
||||
|
||||
const CustomWidthTooltip = styled(({ className, ...props }) => <Tooltip {...props} classes={{ popper: className }} />)({
|
||||
[`& .${tooltipClasses.tooltip}`]: {
|
||||
|
|
@ -17,11 +18,12 @@ const CustomWidthTooltip = styled(({ className, ...props }) => <Tooltip {...prop
|
|||
|
||||
// ===========================|| NodeOutputHandler ||=========================== //
|
||||
|
||||
const NodeOutputHandler = ({ outputAnchor, data }) => {
|
||||
const NodeOutputHandler = ({ outputAnchor, data, disabled = false }) => {
|
||||
const theme = useTheme()
|
||||
const ref = useRef(null)
|
||||
const updateNodeInternals = useUpdateNodeInternals()
|
||||
const [position, setPosition] = useState(0)
|
||||
const [dropdownValue, setDropdownValue] = useState(null)
|
||||
const { reactFlowInstance } = useContext(flowContext)
|
||||
|
||||
useEffect(() => {
|
||||
|
|
@ -39,33 +41,82 @@ const NodeOutputHandler = ({ outputAnchor, data }) => {
|
|||
}, 0)
|
||||
}, [data.id, position, updateNodeInternals])
|
||||
|
||||
useEffect(() => {
|
||||
if (dropdownValue) {
|
||||
setTimeout(() => {
|
||||
updateNodeInternals(data.id)
|
||||
}, 0)
|
||||
}
|
||||
}, [data.id, dropdownValue, updateNodeInternals])
|
||||
|
||||
return (
|
||||
<div ref={ref}>
|
||||
<CustomWidthTooltip placement='right' title={outputAnchor.type}>
|
||||
<Handle
|
||||
type='source'
|
||||
position={Position.Right}
|
||||
key={outputAnchor.id}
|
||||
id={outputAnchor.id}
|
||||
isValidConnection={(connection) => isValidConnection(connection, reactFlowInstance)}
|
||||
style={{
|
||||
height: 10,
|
||||
width: 10,
|
||||
backgroundColor: data.selected ? theme.palette.primary.main : theme.palette.text.secondary,
|
||||
top: position
|
||||
}}
|
||||
/>
|
||||
</CustomWidthTooltip>
|
||||
<Box sx={{ p: 2, textAlign: 'end' }}>
|
||||
<Typography>{outputAnchor.label}</Typography>
|
||||
</Box>
|
||||
{outputAnchor.type !== 'options' && !outputAnchor.options && (
|
||||
<>
|
||||
<CustomWidthTooltip placement='right' title={outputAnchor.type}>
|
||||
<Handle
|
||||
type='source'
|
||||
position={Position.Right}
|
||||
key={outputAnchor.id}
|
||||
id={outputAnchor.id}
|
||||
isValidConnection={(connection) => isValidConnection(connection, reactFlowInstance)}
|
||||
style={{
|
||||
height: 10,
|
||||
width: 10,
|
||||
backgroundColor: data.selected ? theme.palette.primary.main : theme.palette.text.secondary,
|
||||
top: position
|
||||
}}
|
||||
/>
|
||||
</CustomWidthTooltip>
|
||||
<Box sx={{ p: 2, textAlign: 'end' }}>
|
||||
<Typography>{outputAnchor.label}</Typography>
|
||||
</Box>
|
||||
</>
|
||||
)}
|
||||
{outputAnchor.type === 'options' && outputAnchor.options && outputAnchor.options.length > 0 && (
|
||||
<>
|
||||
<CustomWidthTooltip
|
||||
placement='right'
|
||||
title={
|
||||
outputAnchor.options.find((opt) => opt.name === data.outputs?.[outputAnchor.name])?.type ?? outputAnchor.type
|
||||
}
|
||||
>
|
||||
<Handle
|
||||
type='source'
|
||||
position={Position.Right}
|
||||
id={outputAnchor.options.find((opt) => opt.name === data.outputs?.[outputAnchor.name])?.id ?? ''}
|
||||
isValidConnection={(connection) => isValidConnection(connection, reactFlowInstance)}
|
||||
style={{
|
||||
height: 10,
|
||||
width: 10,
|
||||
backgroundColor: data.selected ? theme.palette.primary.main : theme.palette.text.secondary,
|
||||
top: position
|
||||
}}
|
||||
/>
|
||||
</CustomWidthTooltip>
|
||||
<Box sx={{ p: 2, textAlign: 'end' }}>
|
||||
<Dropdown
|
||||
disabled={disabled}
|
||||
disableClearable={true}
|
||||
name={outputAnchor.name}
|
||||
options={outputAnchor.options}
|
||||
onSelect={(newValue) => {
|
||||
setDropdownValue(newValue)
|
||||
data.outputs[outputAnchor.name] = newValue
|
||||
}}
|
||||
value={data.outputs[outputAnchor.name] ?? outputAnchor.default ?? 'choose an option'}
|
||||
/>
|
||||
</Box>
|
||||
</>
|
||||
)}
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
NodeOutputHandler.propTypes = {
|
||||
outputAnchor: PropTypes.object,
|
||||
data: PropTypes.object
|
||||
data: PropTypes.object,
|
||||
disabled: PropTypes.bool
|
||||
}
|
||||
|
||||
export default NodeOutputHandler
|
||||
|
|
|
|||
|
|
@ -108,10 +108,14 @@ const Canvas = () => {
|
|||
setTimeout(() => setDirty(), 0)
|
||||
let value
|
||||
const inputAnchor = node.data.inputAnchors.find((ancr) => ancr.name === targetInput)
|
||||
const inputParam = node.data.inputParams.find((param) => param.name === targetInput)
|
||||
|
||||
if (inputAnchor && inputAnchor.list) {
|
||||
const newValues = node.data.inputs[targetInput] || []
|
||||
newValues.push(`{{${sourceNodeId}.data.instance}}`)
|
||||
value = newValues
|
||||
} else if (inputParam && inputParam.acceptVariable) {
|
||||
value = node.data.inputs[targetInput] || ''
|
||||
} else {
|
||||
value = `{{${sourceNodeId}.data.instance}}`
|
||||
}
|
||||
|
|
|
|||
|
|
@ -88,7 +88,7 @@ const MarketplaceCanvasNode = ({ data }) => {
|
|||
</>
|
||||
)}
|
||||
{data.inputAnchors.map((inputAnchor, index) => (
|
||||
<NodeInputHandler key={index} inputAnchor={inputAnchor} data={data} />
|
||||
<NodeInputHandler disabled={true} key={index} inputAnchor={inputAnchor} data={data} />
|
||||
))}
|
||||
{data.inputParams.map((inputParam, index) => (
|
||||
<NodeInputHandler disabled={true} key={index} inputParam={inputParam} data={data} />
|
||||
|
|
@ -108,7 +108,7 @@ const MarketplaceCanvasNode = ({ data }) => {
|
|||
<Divider />
|
||||
|
||||
{data.outputAnchors.map((outputAnchor, index) => (
|
||||
<NodeOutputHandler key={index} outputAnchor={outputAnchor} data={data} />
|
||||
<NodeOutputHandler disabled={true} key={index} outputAnchor={outputAnchor} data={data} />
|
||||
))}
|
||||
</Box>
|
||||
</CardWrapper>
|
||||
|
|
|
|||
Loading…
Reference in New Issue