Chore/API for AgentflowV2 (#4696)

* Enhancement: Introduce prepended chat history handling in Agent and LLM nodes.

- Added support for `prependedChatHistory` in both `Agent` and `LLM` classes to allow for initial message context.
- Implemented validation for history schema in execution flow to ensure proper format.
- Refactored utility functions to include JSON sanitization and validation methods for improved data handling.

* update prediction swagger
This commit is contained in:
Henry Heng 2025-06-22 13:16:35 +01:00 committed by GitHub
parent 035b5555a9
commit 543800562e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 426 additions and 89 deletions

View File

@ -1216,15 +1216,18 @@ paths:
security:
- bearerAuth: []
operationId: createPrediction
summary: Create a new prediction
description: Create a new prediction
summary: Send message to flow and get AI response
description: |
Send a message to your flow and receive an AI-generated response. This is the primary endpoint for interacting with your flows and assistants.
**Authentication**: API key may be required depending on flow settings.
parameters:
- in: path
name: id
required: true
schema:
type: string
description: Chatflow ID
description: Flow ID - the unique identifier of your flow
example: 'your-flow-id'
requestBody:
content:
application/json:
@ -1236,24 +1239,36 @@ paths:
properties:
question:
type: string
description: Question to ask during the prediction process
description: Question/message to send to the flow
example: 'Analyze this uploaded file and summarize its contents'
files:
type: array
items:
type: string
format: binary
description: Files to be uploaded
modelName:
description: Files to be uploaded (images, audio, documents, etc.)
streaming:
type: boolean
description: Enable streaming responses
default: false
overrideConfig:
type: string
nullable: true
example: ''
description: Other override configurations
description: JSON string of configuration overrides
example: '{"sessionId":"user-123","temperature":0.7}'
history:
type: string
description: JSON string of conversation history
example: '[{"role":"userMessage","content":"Hello"},{"role":"apiMessage","content":"Hi there!"}]'
humanInput:
type: string
description: JSON string of human input for resuming execution
example: '{"type":"proceed","feedback":"Continue with the plan"}'
required:
- question
required: true
responses:
'200':
description: Prediction created successfully
description: Successful prediction response
content:
application/json:
schema:
@ -1261,45 +1276,106 @@ paths:
properties:
text:
type: string
description: The result of the prediction
description: The AI-generated response text
example: 'Artificial intelligence (AI) is a branch of computer science that focuses on creating systems capable of performing tasks that typically require human intelligence.'
json:
type: object
description: The result of the prediction in JSON format if available
description: The result in JSON format if available (for structured outputs)
nullable: true
question:
type: string
description: The question asked during the prediction process
description: The original question/message sent to the flow
example: 'What is artificial intelligence?'
chatId:
type: string
description: The chat ID associated with the prediction
description: Unique identifier for the chat session
example: 'chat-12345'
chatMessageId:
type: string
description: The chat message ID associated with the prediction
description: Unique identifier for this specific message
example: 'msg-67890'
sessionId:
type: string
description: The session ID associated with the prediction
description: Session identifier for conversation continuity
example: 'user-session-123'
nullable: true
memoryType:
type: string
description: The memory type associated with the prediction
description: Type of memory used for conversation context
example: 'Buffer Memory'
nullable: true
sourceDocuments:
type: array
description: Documents retrieved from vector store (if RAG is enabled)
items:
$ref: '#/components/schemas/Document'
nullable: true
usedTools:
type: array
description: Tools that were invoked during the response generation
items:
$ref: '#/components/schemas/UsedTool'
fileAnnotations:
type: array
items:
$ref: '#/components/schemas/FileAnnotation'
nullable: true
'400':
description: Invalid input provided
description: Bad Request - Invalid input provided or request format is incorrect
content:
application/json:
schema:
type: object
properties:
error:
type: string
example: 'Invalid request format. Check required fields and parameter types.'
'401':
description: Unauthorized - API key required or invalid
content:
application/json:
schema:
type: object
properties:
error:
type: string
example: 'Unauthorized access. Please verify your API key.'
'404':
description: Chatflow not found
description: Not Found - Chatflow with specified ID does not exist
content:
application/json:
schema:
type: object
properties:
error:
type: string
example: 'Chatflow not found. Please verify the chatflow ID.'
'413':
description: Payload Too Large - Request payload exceeds size limits
content:
application/json:
schema:
type: object
properties:
error:
type: string
example: 'Request payload too large. Please reduce file sizes or split large requests.'
'422':
description: Validation error
description: Validation Error - Request validation failed
content:
application/json:
schema:
type: object
properties:
error:
type: string
example: 'Validation failed. Check parameter requirements and data types.'
'500':
description: Internal server error
description: Internal Server Error - Flow configuration or execution error
content:
application/json:
schema:
type: object
properties:
error:
type: string
example: 'Internal server error. Check flow configuration and node settings.'
/tools:
post:
tags:
@ -2011,13 +2087,33 @@ components:
properties:
question:
type: string
description: The question being asked
description: The question/message to send to the flow
example: 'What is artificial intelligence?'
form:
type: object
description: The form object to send to the flow (alternative to question for Agentflow V2)
additionalProperties: true
example:
title: 'Example'
count: 1
streaming:
type: boolean
description: Enable streaming responses for real-time output
default: false
example: false
overrideConfig:
type: object
description: The configuration to override the default prediction settings (optional)
description: Override flow configuration and pass variables at runtime
additionalProperties: true
example:
sessionId: 'user-session-123'
temperature: 0.7
maxTokens: 500
vars:
user_name: 'Alice'
history:
type: array
description: The history messages to be prepended (optional)
description: Previous conversation messages for context
items:
type: object
properties:
@ -2030,8 +2126,14 @@ components:
type: string
description: The content of the message
example: 'Hello, how can I help you?'
example:
- role: 'apiMessage'
content: "Hello! I'm an AI assistant. How can I help you today?"
- role: 'userMessage'
content: "Hi, my name is Sarah and I'm learning about AI"
uploads:
type: array
description: Files to upload (images, audio, documents, etc.)
items:
type: object
properties:
@ -2051,7 +2153,42 @@ components:
mime:
type: string
description: The MIME type of the file or resource
enum:
[
'image/png',
'image/jpeg',
'image/jpg',
'image/gif',
'image/webp',
'audio/mp4',
'audio/webm',
'audio/wav',
'audio/mpeg',
'audio/ogg',
'audio/aac'
]
example: 'image/png'
example:
- type: 'file'
name: 'example.png'
data: ''
mime: 'image/png'
humanInput:
type: object
description: Return human feedback and resume execution from a stopped checkpoint
properties:
type:
type: string
enum: [proceed, reject]
description: Type of human input response
example: 'reject'
feedback:
type: string
description: Feedback to the last output
example: 'Include more emoji'
example:
type: 'reject'
feedback: 'Include more emoji'
Tool:
type: object

View File

@ -3,6 +3,7 @@ import {
ICommonObject,
IDatabaseEntity,
IHumanInput,
IMessage,
INode,
INodeData,
INodeOptionsValue,
@ -696,6 +697,7 @@ class Agent_Agentflow implements INode {
const state = options.agentflowRuntime?.state as ICommonObject
const pastChatHistory = (options.pastChatHistory as BaseMessageLike[]) ?? []
const runtimeChatHistory = (options.agentflowRuntime?.chatHistory as BaseMessageLike[]) ?? []
const prependedChatHistory = options.prependedChatHistory as IMessage[]
const chatId = options.chatId as string
// Initialize the LLM model instance
@ -730,6 +732,18 @@ class Agent_Agentflow implements INode {
// Use to keep track of past messages with image file references
let pastImageMessagesWithFileRef: BaseMessageLike[] = []
// Prepend history ONLY if it is the first node
if (prependedChatHistory.length > 0 && !runtimeChatHistory.length) {
for (const msg of prependedChatHistory) {
const role: string = msg.role === 'apiMessage' ? 'assistant' : 'user'
const content: string = msg.content ?? ''
messages.push({
role,
content
})
}
}
for (const msg of agentMessages) {
const role = msg.role
const content = msg.content

View File

@ -1,5 +1,5 @@
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { ICommonObject, INode, INodeData, INodeOptionsValue, INodeParams, IServerSideEventStreamer } from '../../../src/Interface'
import { ICommonObject, IMessage, INode, INodeData, INodeOptionsValue, INodeParams, IServerSideEventStreamer } from '../../../src/Interface'
import { AIMessageChunk, BaseMessageLike, MessageContentText } from '@langchain/core/messages'
import { DEFAULT_SUMMARIZER_TEMPLATE } from '../prompt'
import { z } from 'zod'
@ -359,6 +359,7 @@ class LLM_Agentflow implements INode {
const state = options.agentflowRuntime?.state as ICommonObject
const pastChatHistory = (options.pastChatHistory as BaseMessageLike[]) ?? []
const runtimeChatHistory = (options.agentflowRuntime?.chatHistory as BaseMessageLike[]) ?? []
const prependedChatHistory = options.prependedChatHistory as IMessage[]
const chatId = options.chatId as string
// Initialize the LLM model instance
@ -382,6 +383,18 @@ class LLM_Agentflow implements INode {
// Use to keep track of past messages with image file references
let pastImageMessagesWithFileRef: BaseMessageLike[] = []
// Prepend history ONLY if it is the first node
if (prependedChatHistory.length > 0 && !runtimeChatHistory.length) {
for (const msg of prependedChatHistory) {
const role: string = msg.role === 'apiMessage' ? 'assistant' : 'user'
const content: string = msg.content ?? ''
messages.push({
role,
content
})
}
}
for (const msg of llmMessages) {
const role = msg.role
const content = msg.content

View File

@ -322,7 +322,7 @@ export interface IOverrideConfig {
label: string
name: string
type: string
schema?: ICommonObject[]
schema?: ICommonObject[] | Record<string, string>
}
export type ICredentialDataDecrypted = ICommonObject

View File

@ -5,7 +5,7 @@ import { Execution } from '../../database/entities/Execution'
import { InternalFlowiseError } from '../../errors/internalFlowiseError'
import { getErrorMessage } from '../../errors/utils'
import { ExecutionState, IAgentflowExecutedData } from '../../Interface'
import { _removeCredentialId } from '../../utils/buildAgentflow'
import { _removeCredentialId } from '../../utils'
import { getRunningExpressApp } from '../../utils/getRunningExpressApp'
export interface ExecutionFilters {

View File

@ -41,7 +41,9 @@ import {
getStartingNode,
getTelemetryFlowObj,
QUESTION_VAR_PREFIX,
CURRENT_DATE_TIME_VAR_PREFIX
CURRENT_DATE_TIME_VAR_PREFIX,
_removeCredentialId,
validateHistorySchema
} from '.'
import { ChatFlow } from '../database/entities/ChatFlow'
import { Variable } from '../database/entities/Variable'
@ -105,6 +107,7 @@ interface IExecuteNodeParams {
evaluationRunId?: string
isInternal: boolean
pastChatHistory: IMessage[]
prependedChatHistory: IMessage[]
appDataSource: DataSource
usageCacheManager: UsageCacheManager
telemetry: Telemetry
@ -203,21 +206,6 @@ const updateExecution = async (appDataSource: DataSource, executionId: string, w
await appDataSource.getRepository(Execution).save(execution)
}
export const _removeCredentialId = (obj: any): any => {
if (!obj || typeof obj !== 'object') return obj
if (Array.isArray(obj)) {
return obj.map((item) => _removeCredentialId(item))
}
const newObj: Record<string, any> = {}
for (const [key, value] of Object.entries(obj)) {
if (key === 'FLOWISE_CREDENTIAL_ID') continue
newObj[key] = _removeCredentialId(value)
}
return newObj
}
export const resolveVariables = async (
reactFlowNodeData: INodeData,
question: string,
@ -820,6 +808,7 @@ const executeNode = async ({
evaluationRunId,
parentExecutionId,
pastChatHistory,
prependedChatHistory,
appDataSource,
usageCacheManager,
telemetry,
@ -927,6 +916,7 @@ const executeNode = async ({
humanInputAction = lastNodeOutput?.humanInputAction
}
// This is when human in the loop is resumed
if (humanInput && nodeId === humanInput.startNodeId) {
reactFlowNodeData.inputs = { ...reactFlowNodeData.inputs, humanInput }
// Remove the stopped humanInput from execution data
@ -973,6 +963,7 @@ const executeNode = async ({
isLastNode,
sseStreamer,
pastChatHistory,
prependedChatHistory,
agentflowRuntime,
abortController,
analyticHandlers,
@ -1297,6 +1288,17 @@ export const executeAgentFlow = async ({
const chatflowid = chatflow.id
const sessionId = incomingInput.sessionId ?? chatId
const humanInput: IHumanInput | undefined = incomingInput.humanInput
// Validate history schema if provided
if (incomingInput.history && incomingInput.history.length > 0) {
if (!validateHistorySchema(incomingInput.history)) {
throw new Error(
'Invalid history format. Each history item must have: ' + '{ role: "apiMessage" | "userMessage", content: string }'
)
}
}
const prependedChatHistory = incomingInput.history ?? []
const apiMessageId = uuidv4()
/*** Get chatflows and prepare data ***/
@ -1413,35 +1415,90 @@ export const executeAgentFlow = async ({
}
// If it is human input, find the last checkpoint and resume
if (humanInput?.startNodeId) {
if (humanInput) {
if (!previousExecution) {
throw new Error(`No previous execution found for session ${sessionId}`)
}
if (previousExecution.state !== 'STOPPED') {
let executionData = JSON.parse(previousExecution.executionData) as IAgentflowExecutedData[]
let shouldUpdateExecution = false
// Handle different execution states
if (previousExecution.state === 'STOPPED') {
// Normal case - execution is stopped and ready to resume
logger.debug(` ✅ Previous execution is in STOPPED state, ready to resume`)
} else if (previousExecution.state === 'ERROR') {
// Check if second-to-last execution item is STOPPED and last is ERROR
if (executionData.length >= 2) {
const lastItem = executionData[executionData.length - 1]
const secondLastItem = executionData[executionData.length - 2]
if (lastItem.status === 'ERROR' && secondLastItem.status === 'STOPPED') {
logger.debug(` 🔄 Found ERROR after STOPPED - removing last error item to allow retry`)
logger.debug(` Removing: ${lastItem.nodeId} (${lastItem.nodeLabel}) - ${lastItem.data?.error || 'Unknown error'}`)
// Remove the last ERROR item
executionData = executionData.slice(0, -1)
shouldUpdateExecution = true
} else {
throw new Error(
`Cannot resume execution ${previousExecution.id} because it is in 'ERROR' state ` +
`and the previous item is not in 'STOPPED' state. Only executions that ended with a ` +
`STOPPED state (or ERROR after STOPPED) can be resumed.`
)
}
} else {
throw new Error(
`Cannot resume execution ${previousExecution.id} because it is in 'ERROR' state ` +
`with insufficient execution data. Only executions in 'STOPPED' state can be resumed.`
)
}
} else {
throw new Error(
`Cannot resume execution ${previousExecution.id} because it is in '${previousExecution.state}' state. ` +
`Only executions in 'STOPPED' state can be resumed.`
`Only executions in 'STOPPED' state (or 'ERROR' after 'STOPPED') can be resumed.`
)
}
startingNodeIds.push(humanInput.startNodeId)
checkForMultipleStartNodes(startingNodeIds, isRecursive, nodes)
let startNodeId = humanInput.startNodeId
const executionData = JSON.parse(previousExecution.executionData) as IAgentflowExecutedData[]
// If startNodeId is not provided, find the last node with STOPPED status from execution data
if (!startNodeId) {
// Search in reverse order to find the last (most recent) STOPPED node
const stoppedNode = [...executionData].reverse().find((data) => data.status === 'STOPPED')
// Verify that the humanInputAgentflow node exists in previous execution
const humanInputNodeExists = executionData.some((data) => data.nodeId === humanInput.startNodeId)
if (!stoppedNode) {
throw new Error('No stopped node found in previous execution data to resume from')
}
if (!humanInputNodeExists) {
startNodeId = stoppedNode.nodeId
logger.debug(` 🔍 Auto-detected stopped node to resume from: ${startNodeId} (${stoppedNode.nodeLabel})`)
}
// Verify that the node exists in previous execution
const nodeExists = executionData.some((data) => data.nodeId === startNodeId)
if (!nodeExists) {
throw new Error(
`Human Input node ${humanInput.startNodeId} not found in previous execution. ` +
`Node ${startNodeId} not found in previous execution. ` +
`This could indicate an invalid resume attempt or a modified flow.`
)
}
startingNodeIds.push(startNodeId)
checkForMultipleStartNodes(startingNodeIds, isRecursive, nodes)
agentFlowExecutedData.push(...executionData)
// Update execution data if we removed an error item
if (shouldUpdateExecution) {
logger.debug(` 📝 Updating execution data after removing error item`)
await updateExecution(appDataSource, previousExecution.id, workspaceId, {
executionData: JSON.stringify(executionData),
state: 'INPROGRESS'
})
}
// Get last state
const lastState = executionData[executionData.length - 1].data.state
@ -1454,6 +1511,9 @@ export const executeAgentFlow = async ({
})
newExecution = previousExecution
parentExecutionId = previousExecution.id
// Update humanInput with the resolved startNodeId
humanInput.startNodeId = startNodeId
} else if (isRecursive && parentExecutionId) {
const { startingNodeIds: startingNodeIdsFromFlow } = getStartingNode(nodeDependencies)
startingNodeIds.push(...startingNodeIdsFromFlow)
@ -1604,6 +1664,7 @@ export const executeAgentFlow = async ({
parentExecutionId,
isInternal,
pastChatHistory,
prependedChatHistory,
appDataSource,
usageCacheManager,
telemetry,

View File

@ -1103,12 +1103,13 @@ export const replaceInputsWithConfig = (
* Several conditions:
* 1. If config is 'analytics', always allow it
* 2. If config is 'vars', check its object and filter out the variables that are not enabled for override
* 3. If typeof config's value is an object, check if the node id is in the overrideConfig object and if the parameter (systemMessagePrompt) is enabled
* 3. If typeof config's value is an array, check if the parameter is enabled and apply directly
* 4. If typeof config's value is an object, check if the node id is in the overrideConfig object and if the parameter (systemMessagePrompt) is enabled
* Example:
* "systemMessagePrompt": {
* "chatPromptTemplate_0": "You are an assistant"
* }
* 4. If typeof config's value is a string, check if the parameter is enabled
* 5. If typeof config's value is a string, check if the parameter is enabled
* Example:
* "systemMessagePrompt": "You are an assistant"
*/
@ -1129,6 +1130,12 @@ export const replaceInputsWithConfig = (
}
overrideConfig[config] = filteredVars
}
} else if (Array.isArray(overrideConfig[config])) {
// Handle arrays as direct parameter values
if (isParameterEnabled(flowNodeData.label, config)) {
inputsObj[config] = overrideConfig[config]
}
continue
} else if (overrideConfig[config] && typeof overrideConfig[config] === 'object') {
const nodeIds = Object.keys(overrideConfig[config])
if (nodeIds.includes(flowNodeData.id)) {
@ -1352,6 +1359,48 @@ export const findAvailableConfigs = (reactFlowNodes: IReactFlowNode[], component
schema: arraySchema
}
}
} else if (inputParam.loadConfig) {
const configData = flowNode?.data?.inputs?.[`${inputParam.name}Config`]
if (configData) {
// Parse config data to extract schema
let parsedConfig: any = {}
try {
parsedConfig = typeof configData === 'string' ? JSON.parse(configData) : configData
} catch (e) {
// If parsing fails, treat as empty object
parsedConfig = {}
}
// Generate schema from config structure
const configSchema: Record<string, string> = {}
parsedConfig = _removeCredentialId(parsedConfig)
for (const key in parsedConfig) {
if (key === inputParam.name) continue
const value = parsedConfig[key]
let fieldType = 'string' // default type
if (typeof value === 'boolean') {
fieldType = 'boolean'
} else if (typeof value === 'number') {
fieldType = 'number'
} else if (Array.isArray(value)) {
fieldType = 'array'
} else if (typeof value === 'object' && value !== null) {
fieldType = 'object'
}
configSchema[key] = fieldType
}
obj = {
node: flowNode.data.label,
nodeId: flowNode.data.id,
label: `${inputParam.label} Config`,
name: `${inputParam.name}Config`,
type: `json`,
schema: configSchema
}
}
} else {
obj = {
node: flowNode.data.label,
@ -1930,3 +1979,48 @@ export const getAllNodesInPath = (startNode: string, graph: INodeDirectedGraph):
return Array.from(nodes)
}
export const _removeCredentialId = (obj: any): any => {
if (!obj || typeof obj !== 'object') return obj
if (Array.isArray(obj)) {
return obj.map((item) => _removeCredentialId(item))
}
const newObj: Record<string, any> = {}
for (const [key, value] of Object.entries(obj)) {
if (key === 'FLOWISE_CREDENTIAL_ID') continue
newObj[key] = _removeCredentialId(value)
}
return newObj
}
/**
* Validates that history items follow the expected schema
* @param {any[]} history - Array of history items to validate
* @returns {boolean} - True if all items are valid, false otherwise
*/
export const validateHistorySchema = (history: any[]): boolean => {
if (!Array.isArray(history)) {
return false
}
return history.every((item) => {
// Check if item is an object
if (typeof item !== 'object' || item === null) {
return false
}
// Check if role exists and is valid
if (typeof item.role !== 'string' || !['apiMessage', 'userMessage'].includes(item.role)) {
return false
}
// Check if content exists and is a string
if (typeof item.content !== 'string') {
return false
}
return true
})
}

View File

@ -48,7 +48,10 @@ const OverrideConfigTable = ({ columns, onToggle, rows, sx }) => {
return <SwitchInput onChange={(enabled) => handleChange(enabled, row)} value={row.enabled} />
} else if (key === 'type' && row.schema) {
// If there's schema information, add a tooltip
const schemaContent =
let schemaContent
if (Array.isArray(row.schema)) {
// Handle array format: [{ name: "field", type: "string" }, ...]
schemaContent =
'[<br>' +
row.schema
.map(
@ -63,6 +66,12 @@ const OverrideConfigTable = ({ columns, onToggle, rows, sx }) => {
)
.join(',<br>') +
'<br>]'
} else if (typeof row.schema === 'object' && row.schema !== null) {
// Handle object format: { "field": "string", "field2": "number", ... }
schemaContent = JSON.stringify(row.schema, null, 2).replace(/\n/g, '<br>').replace(/ /g, '&nbsp;')
} else {
schemaContent = 'No schema available'
}
return (
<Stack direction='row' alignItems='center' spacing={1}>

View File

@ -11,7 +11,10 @@ export const TableViewOnly = ({ columns, rows, sx }) => {
return row[key] ? <Chip label='Enabled' color='primary' /> : <Chip label='Disabled' />
} else if (key === 'type' && row.schema) {
// If there's schema information, add a tooltip
const schemaContent =
let schemaContent
if (Array.isArray(row.schema)) {
// Handle array format: [{ name: "field", type: "string" }, ...]
schemaContent =
'[<br>' +
row.schema
.map(
@ -26,6 +29,12 @@ export const TableViewOnly = ({ columns, rows, sx }) => {
)
.join(',<br>') +
'<br>]'
} else if (typeof row.schema === 'object' && row.schema !== null) {
// Handle object format: { "field": "string", "field2": "number", ... }
schemaContent = JSON.stringify(row.schema, null, 2).replace(/\n/g, '<br>').replace(/ /g, '&nbsp;')
} else {
schemaContent = 'No schema available'
}
return (
<Stack direction='row' alignItems='center' spacing={1}>