Merge branch 'FlowiseAI:main' into main
This commit is contained in:
commit
6166074e07
|
|
@ -8,7 +8,12 @@ FROM node:18-alpine
|
|||
RUN apk add --update libc6-compat python3 make g++
|
||||
# needed for pdfjs-dist
|
||||
RUN apk add --no-cache build-base cairo-dev pango-dev
|
||||
|
||||
# Install Chromium
|
||||
RUN apk add --no-cache chromium
|
||||
|
||||
ENV PUPPETEER_SKIP_DOWNLOAD=true
|
||||
ENV PUPPETEER_EXECUTABLE_PATH=/usr/bin/chromium-browser
|
||||
|
||||
WORKDIR /usr/src/packages
|
||||
|
||||
|
|
|
|||
|
|
@ -6,7 +6,12 @@ RUN apk add --no-cache git
|
|||
RUN apk add --no-cache python3 py3-pip make g++
|
||||
# needed for pdfjs-dist
|
||||
RUN apk add --no-cache build-base cairo-dev pango-dev
|
||||
|
||||
# Install Chromium
|
||||
RUN apk add --no-cache chromium
|
||||
|
||||
ENV PUPPETEER_SKIP_DOWNLOAD=true
|
||||
ENV PUPPETEER_EXECUTABLE_PATH=/usr/bin/chromium-browser
|
||||
|
||||
# You can install a specific version like: flowise@1.0.0
|
||||
RUN npm install -g flowise
|
||||
|
|
|
|||
|
|
@ -66,7 +66,7 @@ class SqlDatabaseChain_Chains implements INode {
|
|||
|
||||
const chain = await getSQLDBChain(databaseType, dbFilePath, model)
|
||||
if (options.socketIO && options.socketIOClientId) {
|
||||
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId)
|
||||
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId, 2)
|
||||
const res = await chain.run(input, [handler])
|
||||
return res
|
||||
} else {
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { HFInput, HuggingFaceInference } from 'langchain/llms/hf'
|
||||
import { HFInput, HuggingFaceInference } from './core'
|
||||
|
||||
class ChatHuggingFace_ChatModels implements INode {
|
||||
label: string
|
||||
|
|
@ -71,6 +71,15 @@ class ChatHuggingFace_ChatModels implements INode {
|
|||
description: 'Frequency Penalty parameter may not apply to certain model. Please check available model parameters',
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
},
|
||||
{
|
||||
label: 'Endpoint',
|
||||
name: 'endpoint',
|
||||
type: 'string',
|
||||
placeholder: 'https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2',
|
||||
description: 'Using your own inference endpoint',
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
@ -83,6 +92,7 @@ class ChatHuggingFace_ChatModels implements INode {
|
|||
const topP = nodeData.inputs?.topP as string
|
||||
const hfTopK = nodeData.inputs?.hfTopK as string
|
||||
const frequencyPenalty = nodeData.inputs?.frequencyPenalty as string
|
||||
const endpoint = nodeData.inputs?.endpoint as string
|
||||
|
||||
const obj: Partial<HFInput> = {
|
||||
model,
|
||||
|
|
@ -94,6 +104,7 @@ class ChatHuggingFace_ChatModels implements INode {
|
|||
if (topP) obj.topP = parseInt(topP, 10)
|
||||
if (hfTopK) obj.topK = parseInt(hfTopK, 10)
|
||||
if (frequencyPenalty) obj.frequencyPenalty = parseInt(frequencyPenalty, 10)
|
||||
if (endpoint) obj.endpoint = endpoint
|
||||
|
||||
const huggingFace = new HuggingFaceInference(obj)
|
||||
return huggingFace
|
||||
|
|
|
|||
|
|
@ -0,0 +1,109 @@
|
|||
import { getEnvironmentVariable } from '../../../src/utils'
|
||||
import { LLM, BaseLLMParams } from 'langchain/llms/base'
|
||||
|
||||
export interface HFInput {
|
||||
/** Model to use */
|
||||
model: string
|
||||
|
||||
/** Sampling temperature to use */
|
||||
temperature?: number
|
||||
|
||||
/**
|
||||
* Maximum number of tokens to generate in the completion.
|
||||
*/
|
||||
maxTokens?: number
|
||||
|
||||
/** Total probability mass of tokens to consider at each step */
|
||||
topP?: number
|
||||
|
||||
/** Integer to define the top tokens considered within the sample operation to create new text. */
|
||||
topK?: number
|
||||
|
||||
/** Penalizes repeated tokens according to frequency */
|
||||
frequencyPenalty?: number
|
||||
|
||||
/** API key to use. */
|
||||
apiKey?: string
|
||||
|
||||
/** Private endpoint to use. */
|
||||
endpoint?: string
|
||||
}
|
||||
|
||||
export class HuggingFaceInference extends LLM implements HFInput {
|
||||
get lc_secrets(): { [key: string]: string } | undefined {
|
||||
return {
|
||||
apiKey: 'HUGGINGFACEHUB_API_KEY'
|
||||
}
|
||||
}
|
||||
|
||||
model = 'gpt2'
|
||||
|
||||
temperature: number | undefined = undefined
|
||||
|
||||
maxTokens: number | undefined = undefined
|
||||
|
||||
topP: number | undefined = undefined
|
||||
|
||||
topK: number | undefined = undefined
|
||||
|
||||
frequencyPenalty: number | undefined = undefined
|
||||
|
||||
apiKey: string | undefined = undefined
|
||||
|
||||
endpoint: string | undefined = undefined
|
||||
|
||||
constructor(fields?: Partial<HFInput> & BaseLLMParams) {
|
||||
super(fields ?? {})
|
||||
|
||||
this.model = fields?.model ?? this.model
|
||||
this.temperature = fields?.temperature ?? this.temperature
|
||||
this.maxTokens = fields?.maxTokens ?? this.maxTokens
|
||||
this.topP = fields?.topP ?? this.topP
|
||||
this.topK = fields?.topK ?? this.topK
|
||||
this.frequencyPenalty = fields?.frequencyPenalty ?? this.frequencyPenalty
|
||||
this.endpoint = fields?.endpoint ?? ''
|
||||
this.apiKey = fields?.apiKey ?? getEnvironmentVariable('HUGGINGFACEHUB_API_KEY')
|
||||
if (!this.apiKey) {
|
||||
throw new Error(
|
||||
'Please set an API key for HuggingFace Hub in the environment variable HUGGINGFACEHUB_API_KEY or in the apiKey field of the HuggingFaceInference constructor.'
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
_llmType() {
|
||||
return 'hf'
|
||||
}
|
||||
|
||||
/** @ignore */
|
||||
async _call(prompt: string, options: this['ParsedCallOptions']): Promise<string> {
|
||||
const { HfInference } = await HuggingFaceInference.imports()
|
||||
const hf = new HfInference(this.apiKey)
|
||||
if (this.endpoint) hf.endpoint(this.endpoint)
|
||||
const res = await this.caller.callWithOptions({ signal: options.signal }, hf.textGeneration.bind(hf), {
|
||||
model: this.model,
|
||||
parameters: {
|
||||
// make it behave similar to openai, returning only the generated text
|
||||
return_full_text: false,
|
||||
temperature: this.temperature,
|
||||
max_new_tokens: this.maxTokens,
|
||||
top_p: this.topP,
|
||||
top_k: this.topK,
|
||||
repetition_penalty: this.frequencyPenalty
|
||||
},
|
||||
inputs: prompt
|
||||
})
|
||||
return res.generated_text
|
||||
}
|
||||
|
||||
/** @ignore */
|
||||
static async imports(): Promise<{
|
||||
HfInference: typeof import('@huggingface/inference').HfInference
|
||||
}> {
|
||||
try {
|
||||
const { HfInference } = await import('@huggingface/inference')
|
||||
return { HfInference }
|
||||
} catch (e) {
|
||||
throw new Error('Please install huggingface as a dependency with, e.g. `yarn add @huggingface/inference`')
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -73,7 +73,12 @@ class Puppeteer_DocumentLoaders implements INode {
|
|||
|
||||
const puppeteerLoader = async (url: string): Promise<any> => {
|
||||
let docs = []
|
||||
const loader = new PuppeteerWebBaseLoader(url)
|
||||
const loader = new PuppeteerWebBaseLoader(url, {
|
||||
launchOptions: {
|
||||
args: ['--no-sandbox'],
|
||||
headless: 'new'
|
||||
}
|
||||
})
|
||||
if (textSplitter) {
|
||||
docs = await loader.loadAndSplit(textSplitter)
|
||||
} else {
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { HuggingFaceInferenceEmbeddings, HuggingFaceInferenceEmbeddingsParams } from 'langchain/embeddings/hf'
|
||||
import { HuggingFaceInferenceEmbeddings, HuggingFaceInferenceEmbeddingsParams } from './core'
|
||||
|
||||
class HuggingFaceInferenceEmbedding_Embeddings implements INode {
|
||||
label: string
|
||||
|
|
@ -31,6 +31,14 @@ class HuggingFaceInferenceEmbedding_Embeddings implements INode {
|
|||
name: 'modelName',
|
||||
type: 'string',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Endpoint',
|
||||
name: 'endpoint',
|
||||
type: 'string',
|
||||
placeholder: 'https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/sentence-transformers/all-MiniLM-L6-v2',
|
||||
description: 'Using your own inference endpoint',
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
@ -38,12 +46,14 @@ class HuggingFaceInferenceEmbedding_Embeddings implements INode {
|
|||
async init(nodeData: INodeData): Promise<any> {
|
||||
const apiKey = nodeData.inputs?.apiKey as string
|
||||
const modelName = nodeData.inputs?.modelName as string
|
||||
const endpoint = nodeData.inputs?.endpoint as string
|
||||
|
||||
const obj: Partial<HuggingFaceInferenceEmbeddingsParams> = {
|
||||
apiKey
|
||||
}
|
||||
|
||||
if (modelName) obj.model = modelName
|
||||
if (endpoint) obj.endpoint = endpoint
|
||||
|
||||
const model = new HuggingFaceInferenceEmbeddings(obj)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -0,0 +1,48 @@
|
|||
import { HfInference } from '@huggingface/inference'
|
||||
import { Embeddings, EmbeddingsParams } from 'langchain/embeddings/base'
|
||||
import { getEnvironmentVariable } from '../../../src/utils'
|
||||
|
||||
export interface HuggingFaceInferenceEmbeddingsParams extends EmbeddingsParams {
|
||||
apiKey?: string
|
||||
model?: string
|
||||
endpoint?: string
|
||||
}
|
||||
|
||||
export class HuggingFaceInferenceEmbeddings extends Embeddings implements HuggingFaceInferenceEmbeddingsParams {
|
||||
apiKey?: string
|
||||
|
||||
endpoint?: string
|
||||
|
||||
model: string
|
||||
|
||||
client: HfInference
|
||||
|
||||
constructor(fields?: HuggingFaceInferenceEmbeddingsParams) {
|
||||
super(fields ?? {})
|
||||
|
||||
this.model = fields?.model ?? 'sentence-transformers/distilbert-base-nli-mean-tokens'
|
||||
this.apiKey = fields?.apiKey ?? getEnvironmentVariable('HUGGINGFACEHUB_API_KEY')
|
||||
this.endpoint = fields?.endpoint ?? ''
|
||||
this.client = new HfInference(this.apiKey)
|
||||
if (this.endpoint) this.client.endpoint(this.endpoint)
|
||||
}
|
||||
|
||||
async _embed(texts: string[]): Promise<number[][]> {
|
||||
// replace newlines, which can negatively affect performance.
|
||||
const clean = texts.map((text) => text.replace(/\n/g, ' '))
|
||||
return this.caller.call(() =>
|
||||
this.client.featureExtraction({
|
||||
model: this.model,
|
||||
inputs: clean
|
||||
})
|
||||
) as Promise<number[][]>
|
||||
}
|
||||
|
||||
embedQuery(document: string): Promise<number[]> {
|
||||
return this._embed([document]).then((embeddings) => embeddings[0])
|
||||
}
|
||||
|
||||
embedDocuments(documents: string[]): Promise<number[][]> {
|
||||
return this._embed(documents)
|
||||
}
|
||||
}
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { HFInput, HuggingFaceInference } from 'langchain/llms/hf'
|
||||
import { HFInput, HuggingFaceInference } from './core'
|
||||
|
||||
class HuggingFaceInference_LLMs implements INode {
|
||||
label: string
|
||||
|
|
@ -71,6 +71,15 @@ class HuggingFaceInference_LLMs implements INode {
|
|||
description: 'Frequency Penalty parameter may not apply to certain model. Please check available model parameters',
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
},
|
||||
{
|
||||
label: 'Endpoint',
|
||||
name: 'endpoint',
|
||||
type: 'string',
|
||||
placeholder: 'https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2',
|
||||
description: 'Using your own inference endpoint',
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
@ -83,6 +92,7 @@ class HuggingFaceInference_LLMs implements INode {
|
|||
const topP = nodeData.inputs?.topP as string
|
||||
const hfTopK = nodeData.inputs?.hfTopK as string
|
||||
const frequencyPenalty = nodeData.inputs?.frequencyPenalty as string
|
||||
const endpoint = nodeData.inputs?.endpoint as string
|
||||
|
||||
const obj: Partial<HFInput> = {
|
||||
model,
|
||||
|
|
@ -94,6 +104,7 @@ class HuggingFaceInference_LLMs implements INode {
|
|||
if (topP) obj.topP = parseInt(topP, 10)
|
||||
if (hfTopK) obj.topK = parseInt(hfTopK, 10)
|
||||
if (frequencyPenalty) obj.frequencyPenalty = parseInt(frequencyPenalty, 10)
|
||||
if (endpoint) obj.endpoint = endpoint
|
||||
|
||||
const huggingFace = new HuggingFaceInference(obj)
|
||||
return huggingFace
|
||||
|
|
|
|||
|
|
@ -0,0 +1,109 @@
|
|||
import { getEnvironmentVariable } from '../../../src/utils'
|
||||
import { LLM, BaseLLMParams } from 'langchain/llms/base'
|
||||
|
||||
export interface HFInput {
|
||||
/** Model to use */
|
||||
model: string
|
||||
|
||||
/** Sampling temperature to use */
|
||||
temperature?: number
|
||||
|
||||
/**
|
||||
* Maximum number of tokens to generate in the completion.
|
||||
*/
|
||||
maxTokens?: number
|
||||
|
||||
/** Total probability mass of tokens to consider at each step */
|
||||
topP?: number
|
||||
|
||||
/** Integer to define the top tokens considered within the sample operation to create new text. */
|
||||
topK?: number
|
||||
|
||||
/** Penalizes repeated tokens according to frequency */
|
||||
frequencyPenalty?: number
|
||||
|
||||
/** API key to use. */
|
||||
apiKey?: string
|
||||
|
||||
/** Private endpoint to use. */
|
||||
endpoint?: string
|
||||
}
|
||||
|
||||
export class HuggingFaceInference extends LLM implements HFInput {
|
||||
get lc_secrets(): { [key: string]: string } | undefined {
|
||||
return {
|
||||
apiKey: 'HUGGINGFACEHUB_API_KEY'
|
||||
}
|
||||
}
|
||||
|
||||
model = 'gpt2'
|
||||
|
||||
temperature: number | undefined = undefined
|
||||
|
||||
maxTokens: number | undefined = undefined
|
||||
|
||||
topP: number | undefined = undefined
|
||||
|
||||
topK: number | undefined = undefined
|
||||
|
||||
frequencyPenalty: number | undefined = undefined
|
||||
|
||||
apiKey: string | undefined = undefined
|
||||
|
||||
endpoint: string | undefined = undefined
|
||||
|
||||
constructor(fields?: Partial<HFInput> & BaseLLMParams) {
|
||||
super(fields ?? {})
|
||||
|
||||
this.model = fields?.model ?? this.model
|
||||
this.temperature = fields?.temperature ?? this.temperature
|
||||
this.maxTokens = fields?.maxTokens ?? this.maxTokens
|
||||
this.topP = fields?.topP ?? this.topP
|
||||
this.topK = fields?.topK ?? this.topK
|
||||
this.frequencyPenalty = fields?.frequencyPenalty ?? this.frequencyPenalty
|
||||
this.endpoint = fields?.endpoint ?? ''
|
||||
this.apiKey = fields?.apiKey ?? getEnvironmentVariable('HUGGINGFACEHUB_API_KEY')
|
||||
if (!this.apiKey) {
|
||||
throw new Error(
|
||||
'Please set an API key for HuggingFace Hub in the environment variable HUGGINGFACEHUB_API_KEY or in the apiKey field of the HuggingFaceInference constructor.'
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
_llmType() {
|
||||
return 'hf'
|
||||
}
|
||||
|
||||
/** @ignore */
|
||||
async _call(prompt: string, options: this['ParsedCallOptions']): Promise<string> {
|
||||
const { HfInference } = await HuggingFaceInference.imports()
|
||||
const hf = new HfInference(this.apiKey)
|
||||
if (this.endpoint) hf.endpoint(this.endpoint)
|
||||
const res = await this.caller.callWithOptions({ signal: options.signal }, hf.textGeneration.bind(hf), {
|
||||
model: this.model,
|
||||
parameters: {
|
||||
// make it behave similar to openai, returning only the generated text
|
||||
return_full_text: false,
|
||||
temperature: this.temperature,
|
||||
max_new_tokens: this.maxTokens,
|
||||
top_p: this.topP,
|
||||
top_k: this.topK,
|
||||
repetition_penalty: this.frequencyPenalty
|
||||
},
|
||||
inputs: prompt
|
||||
})
|
||||
return res.generated_text
|
||||
}
|
||||
|
||||
/** @ignore */
|
||||
static async imports(): Promise<{
|
||||
HfInference: typeof import('@huggingface/inference').HfInference
|
||||
}> {
|
||||
try {
|
||||
const { HfInference } = await import('@huggingface/inference')
|
||||
return { HfInference }
|
||||
} catch (e) {
|
||||
throw new Error('Please install huggingface as a dependency with, e.g. `yarn add @huggingface/inference`')
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { ChainTool } from 'langchain/tools'
|
||||
import { BaseChain } from 'langchain/chains'
|
||||
import { ChainTool } from './core'
|
||||
|
||||
class ChainTool_Tools implements INode {
|
||||
label: string
|
||||
|
|
|
|||
|
|
@ -0,0 +1,25 @@
|
|||
import { DynamicTool, DynamicToolInput } from 'langchain/tools'
|
||||
import { BaseChain } from 'langchain/chains'
|
||||
|
||||
export interface ChainToolInput extends Omit<DynamicToolInput, 'func'> {
|
||||
chain: BaseChain
|
||||
}
|
||||
|
||||
export class ChainTool extends DynamicTool {
|
||||
chain: BaseChain
|
||||
|
||||
constructor({ chain, ...rest }: ChainToolInput) {
|
||||
super({
|
||||
...rest,
|
||||
func: async (input, runManager) => {
|
||||
// To enable LLM Chain which has promptValues
|
||||
if ((chain as any).prompt && (chain as any).prompt.promptValues) {
|
||||
const values = await chain.call((chain as any).prompt.promptValues, runManager?.getChild())
|
||||
return values?.text
|
||||
}
|
||||
return chain.run(input, runManager?.getChild())
|
||||
}
|
||||
})
|
||||
this.chain = chain
|
||||
}
|
||||
}
|
||||
|
|
@ -19,7 +19,7 @@
|
|||
"@aws-sdk/client-dynamodb": "^3.360.0",
|
||||
"@dqbd/tiktoken": "^1.0.7",
|
||||
"@getzep/zep-js": "^0.3.1",
|
||||
"@huggingface/inference": "1",
|
||||
"@huggingface/inference": "^2.6.1",
|
||||
"@pinecone-database/pinecone": "^0.0.12",
|
||||
"@qdrant/js-client-rest": "^1.2.2",
|
||||
"@supabase/supabase-js": "^2.21.0",
|
||||
|
|
|
|||
|
|
@ -201,6 +201,20 @@ export const getAvailableURLs = async (url: string, limit: number) => {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get env variables
|
||||
* @param {string} url
|
||||
* @param {number} limit
|
||||
* @returns {string[]}
|
||||
*/
|
||||
export const getEnvironmentVariable = (name: string): string | undefined => {
|
||||
try {
|
||||
return typeof process !== 'undefined' ? process.env?.[name] : undefined
|
||||
} catch (e) {
|
||||
return undefined
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Custom chain handler class
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@ import Transitions from 'ui-component/extended/Transitions'
|
|||
import { StyledFab } from 'ui-component/button/StyledFab'
|
||||
|
||||
// icons
|
||||
import { IconPlus, IconSearch, IconMinus } from '@tabler/icons'
|
||||
import { IconPlus, IconSearch, IconMinus, IconX } from '@tabler/icons'
|
||||
|
||||
// const
|
||||
import { baseURL } from 'store/constant'
|
||||
|
|
@ -61,11 +61,20 @@ const AddNodes = ({ nodesData, node }) => {
|
|||
}
|
||||
}
|
||||
|
||||
const getSearchedNodes = (value) => {
|
||||
const passed = nodesData.filter((nd) => {
|
||||
const passesQuery = nd.name.toLowerCase().includes(value.toLowerCase())
|
||||
const passesCategory = nd.category.toLowerCase().includes(value.toLowerCase())
|
||||
return passesQuery || passesCategory
|
||||
})
|
||||
return passed
|
||||
}
|
||||
|
||||
const filterSearch = (value) => {
|
||||
setSearchValue(value)
|
||||
setTimeout(() => {
|
||||
if (value) {
|
||||
const returnData = nodesData.filter((nd) => nd.name.toLowerCase().includes(value.toLowerCase()))
|
||||
const returnData = getSearchedNodes(value)
|
||||
groupByCategory(returnData, true)
|
||||
scrollTop()
|
||||
} else if (value === '') {
|
||||
|
|
@ -167,7 +176,7 @@ const AddNodes = ({ nodesData, node }) => {
|
|||
<Typography variant='h4'>Add Nodes</Typography>
|
||||
</Stack>
|
||||
<OutlinedInput
|
||||
sx={{ width: '100%', pr: 1, pl: 2, my: 2 }}
|
||||
sx={{ width: '100%', pr: 2, pl: 2, my: 2 }}
|
||||
id='input-search-node'
|
||||
value={searchValue}
|
||||
onChange={(e) => filterSearch(e.target.value)}
|
||||
|
|
@ -177,6 +186,28 @@ const AddNodes = ({ nodesData, node }) => {
|
|||
<IconSearch stroke={1.5} size='1rem' color={theme.palette.grey[500]} />
|
||||
</InputAdornment>
|
||||
}
|
||||
endAdornment={
|
||||
<InputAdornment
|
||||
position='end'
|
||||
sx={{
|
||||
cursor: 'pointer',
|
||||
color: theme.palette.grey[500],
|
||||
'&:hover': {
|
||||
color: theme.palette.grey[900]
|
||||
}
|
||||
}}
|
||||
title='Clear Search'
|
||||
>
|
||||
<IconX
|
||||
stroke={1.5}
|
||||
size='1rem'
|
||||
onClick={() => filterSearch('')}
|
||||
style={{
|
||||
cursor: 'pointer'
|
||||
}}
|
||||
/>
|
||||
</InputAdornment>
|
||||
}
|
||||
aria-describedby='search-helper-text'
|
||||
inputProps={{
|
||||
'aria-label': 'weight'
|
||||
|
|
|
|||
Loading…
Reference in New Issue