Create Vectara_Upload.ts
This commit is contained in:
parent
83d45ebad1
commit
6a8f7a314d
|
|
@ -0,0 +1,161 @@
|
|||
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
||||
import { VectaraStore, VectaraLibArgs, VectaraFilter, VectaraContextConfig } from 'langchain/vectorstores/vectara'
|
||||
import { Document } from 'langchain/document'
|
||||
import { flatten } from 'lodash'
|
||||
|
||||
class VectaraUpload_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
credential: INodeParams
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Vectara Upload File'
|
||||
this.name = 'vectaraUpload'
|
||||
this.version = 1.0
|
||||
this.type = 'Vectara'
|
||||
this.icon = 'vectara.png'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Upload files to Vectara'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.credential = {
|
||||
label: 'Connect Credential',
|
||||
name: 'credential',
|
||||
type: 'credential',
|
||||
credentialNames: ['vectaraApi']
|
||||
}
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'File',
|
||||
name: 'file',
|
||||
type: 'file'
|
||||
},
|
||||
{
|
||||
label: 'Vectara Metadata Filter',
|
||||
name: 'filter',
|
||||
description:
|
||||
'Filter to apply to Vectara metadata. Refer to the <a target="_blank" href="https://docs.flowiseai.com/vector-stores/vectara">documentation</a> on how to use Vectara filters with Flowise.',
|
||||
type: 'string',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Sentences Before',
|
||||
name: 'sentencesBefore',
|
||||
description: 'Number of sentences to fetch before the matched sentence. Defaults to 2.',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Sentences After',
|
||||
name: 'sentencesAfter',
|
||||
description: 'Number of sentences to fetch after the matched sentence. Defaults to 2.',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Lambda',
|
||||
name: 'lambda',
|
||||
description:
|
||||
'Improves retrieval accuracy by adjusting the balance (from 0 to 1) between neural search and keyword-based search factors.',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Defaults to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'Vectara Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'Vectara Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(VectaraStore)]
|
||||
}
|
||||
]
|
||||
}
|
||||
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
||||
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
||||
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
||||
const customerId = getCredentialParam('customerID', credentialData, nodeData)
|
||||
const corpusId = getCredentialParam('corpusID', credentialData, nodeData)
|
||||
|
||||
const fileBase64 = nodeData.inputs?.file
|
||||
const vectaraMetadataFilter = nodeData.inputs?.filter as string
|
||||
const sentencesBefore = nodeData.inputs?.sentencesBefore as number
|
||||
const sentencesAfter = nodeData.inputs?.sentencesAfter as number
|
||||
const lambda = nodeData.inputs?.lambda as number
|
||||
const output = nodeData.outputs?.output as string
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseInt(topK, 10) : 4
|
||||
|
||||
const vectaraArgs: VectaraLibArgs = {
|
||||
apiKey: apiKey,
|
||||
customerId: customerId,
|
||||
corpusId: corpusId
|
||||
}
|
||||
|
||||
const vectaraFilter: VectaraFilter = {}
|
||||
if (vectaraMetadataFilter) vectaraFilter.filter = vectaraMetadataFilter
|
||||
if (lambda) vectaraFilter.lambda = lambda
|
||||
|
||||
const vectaraContextConfig: VectaraContextConfig = {}
|
||||
if (sentencesBefore) vectaraContextConfig.sentencesBefore = sentencesBefore
|
||||
if (sentencesAfter) vectaraContextConfig.sentencesAfter = sentencesAfter
|
||||
vectaraFilter.contextConfig = vectaraContextConfig
|
||||
|
||||
let files: string[] = []
|
||||
|
||||
if (fileBase64.startsWith('[') && fileBase64.endsWith(']')) {
|
||||
files = JSON.parse(fileBase64)
|
||||
} else {
|
||||
files = [fileBase64]
|
||||
}
|
||||
|
||||
const blobs: Blob[] = []
|
||||
for (const file of files) {
|
||||
const splitDataURI = file.split(',')
|
||||
splitDataURI.pop()
|
||||
const bf = Buffer.from(splitDataURI.pop() || '', 'base64')
|
||||
const blob = new Blob([bf])
|
||||
blobs.push(blob)
|
||||
}
|
||||
|
||||
const vectorStore = new VectaraStore(vectaraArgs)
|
||||
const res = await vectorStore.addFiles(blobs)
|
||||
files = []
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k, vectaraFilter)
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: VectaraUpload_VectorStores }
|
||||
Loading…
Reference in New Issue