Merge pull request #512 from vjsai/opensearch
Added support for OpenSearch
This commit is contained in:
commit
7a43eb2c22
|
|
@ -0,0 +1,95 @@
|
|||
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { OpenSearchVectorStore } from 'langchain/vectorstores/opensearch'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { Client } from '@opensearch-project/opensearch'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
|
||||
class OpenSearch_Existing_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'OpenSearch Load Existing Index'
|
||||
this.name = 'openSearchExistingIndex'
|
||||
this.type = 'OpenSearch'
|
||||
this.icon = 'opensearch.png'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Load existing index from OpenSearch (i.e: Document has been upserted)'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Embeddings',
|
||||
name: 'embeddings',
|
||||
type: 'Embeddings'
|
||||
},
|
||||
{
|
||||
label: 'OpenSearch URL',
|
||||
name: 'opensearchURL',
|
||||
type: 'string',
|
||||
placeholder: 'http://127.0.0.1:9200'
|
||||
},
|
||||
{
|
||||
label: 'Index Name',
|
||||
name: 'indexName',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Default to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'OpenSearch Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'OpenSearch Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(OpenSearchVectorStore)]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
||||
const opensearchURL = nodeData.inputs?.opensearchURL as string
|
||||
const indexName = nodeData.inputs?.indexName as string
|
||||
const output = nodeData.outputs?.output as string
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseInt(topK, 10) : 4
|
||||
|
||||
const client = new Client({
|
||||
nodes: [opensearchURL]
|
||||
})
|
||||
|
||||
const vectorStore = new OpenSearchVectorStore(embeddings, {
|
||||
client,
|
||||
indexName
|
||||
})
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k)
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: OpenSearch_Existing_VectorStores }
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 5.1 KiB |
|
|
@ -0,0 +1,110 @@
|
|||
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { OpenSearchVectorStore } from 'langchain/vectorstores/opensearch'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { Document } from 'langchain/document'
|
||||
import { Client } from '@opensearch-project/opensearch'
|
||||
import { flatten } from 'lodash'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
|
||||
class OpenSearchUpsert_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'OpenSearch Upsert Document'
|
||||
this.name = 'openSearchUpsertDocument'
|
||||
this.type = 'OpenSearch'
|
||||
this.icon = 'opensearch.png'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Upsert documents to OpenSearch'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Document',
|
||||
name: 'document',
|
||||
type: 'Document',
|
||||
list: true
|
||||
},
|
||||
{
|
||||
label: 'Embeddings',
|
||||
name: 'embeddings',
|
||||
type: 'Embeddings'
|
||||
},
|
||||
{
|
||||
label: 'OpenSearch URL',
|
||||
name: 'opensearchURL',
|
||||
type: 'string',
|
||||
placeholder: 'http://127.0.0.1:9200'
|
||||
},
|
||||
{
|
||||
label: 'Index Name',
|
||||
name: 'indexName',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Default to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'OpenSearch Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'OpenSearch Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(OpenSearchVectorStore)]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const docs = nodeData.inputs?.document as Document[]
|
||||
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
||||
const opensearchURL = nodeData.inputs?.opensearchURL as string
|
||||
const indexName = nodeData.inputs?.indexName as string
|
||||
const output = nodeData.outputs?.output as string
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseInt(topK, 10) : 4
|
||||
|
||||
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
||||
const finalDocs = []
|
||||
for (let i = 0; i < flattenDocs.length; i += 1) {
|
||||
finalDocs.push(new Document(flattenDocs[i]))
|
||||
}
|
||||
|
||||
const client = new Client({
|
||||
nodes: [opensearchURL]
|
||||
})
|
||||
|
||||
const vectorStore = await OpenSearchVectorStore.fromDocuments(finalDocs, embeddings, {
|
||||
client,
|
||||
indexName: indexName
|
||||
})
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k)
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: OpenSearchUpsert_VectorStores }
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 5.1 KiB |
|
|
@ -20,6 +20,7 @@
|
|||
"@dqbd/tiktoken": "^1.0.7",
|
||||
"@getzep/zep-js": "^0.3.1",
|
||||
"@huggingface/inference": "^2.6.1",
|
||||
"@opensearch-project/opensearch": "^1.2.0",
|
||||
"@pinecone-database/pinecone": "^0.0.12",
|
||||
"@qdrant/js-client-rest": "^1.2.2",
|
||||
"@supabase/supabase-js": "^2.21.0",
|
||||
|
|
|
|||
Loading…
Reference in New Issue