after yarn lint
This commit is contained in:
parent
03e2869b8e
commit
8a96493e32
|
|
@ -1,395 +1,385 @@
|
|||
{
|
||||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 520,
|
||||
"id": "vectaraQAChain_0",
|
||||
"position": {
|
||||
"x": 740.28434119739,
|
||||
"y": 164.93261446841598
|
||||
{
|
||||
"width": 300,
|
||||
"height": 520,
|
||||
"id": "vectaraQAChain_0",
|
||||
"position": {
|
||||
"x": 740.28434119739,
|
||||
"y": 164.93261446841598
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "vectaraQAChain_0",
|
||||
"label": "Vectara QA Chain",
|
||||
"version": 1,
|
||||
"name": "vectaraQAChain",
|
||||
"type": "VectaraQAChain",
|
||||
"baseClasses": ["VectaraQAChain", "BaseChain", "Runnable"],
|
||||
"category": "Chains",
|
||||
"description": "QA chain for Vectara",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Summarizer Prompt Name",
|
||||
"name": "summarizerPromptName",
|
||||
"description": "Summarize the results fetched from Vectara. Read <a target=\"_blank\" href=\"https://docs.vectara.com/docs/learn/grounded-generation/select-a-summarizer\">more</a>",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "vectara-summary-ext-v1.2.0 (gpt-3.5-turbo)",
|
||||
"name": "vectara-summary-ext-v1.2.0"
|
||||
},
|
||||
{
|
||||
"label": "vectara-experimental-summary-ext-2023-10-23-small (gpt-3.5-turbo)",
|
||||
"name": "vectara-experimental-summary-ext-2023-10-23-small",
|
||||
"description": "In beta, available to both Growth and Scale Vectara users"
|
||||
},
|
||||
{
|
||||
"label": "vectara-summary-ext-v1.3.0 (gpt-4.0)",
|
||||
"name": "vectara-summary-ext-v1.3.0",
|
||||
"description": "Only available to paying Scale Vectara users"
|
||||
},
|
||||
{
|
||||
"label": "vectara-experimental-summary-ext-2023-10-23-med (gpt-4.0)",
|
||||
"name": "vectara-experimental-summary-ext-2023-10-23-med",
|
||||
"description": "In beta, only available to paying Scale Vectara users"
|
||||
}
|
||||
],
|
||||
"default": "vectara-summary-ext-v1.2.0",
|
||||
"id": "vectaraQAChain_0-input-summarizerPromptName-options"
|
||||
},
|
||||
{
|
||||
"label": "Response Language",
|
||||
"name": "responseLang",
|
||||
"description": "Return the response in specific language. If not selected, Vectara will automatically detects the language. Read <a target=\"_blank\" href=\"https://docs.vectara.com/docs/learn/grounded-generation/grounded-generation-response-languages\">more</a>",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "English",
|
||||
"name": "eng"
|
||||
},
|
||||
{
|
||||
"label": "German",
|
||||
"name": "deu"
|
||||
},
|
||||
{
|
||||
"label": "French",
|
||||
"name": "fra"
|
||||
},
|
||||
{
|
||||
"label": "Chinese",
|
||||
"name": "zho"
|
||||
},
|
||||
{
|
||||
"label": "Korean",
|
||||
"name": "kor"
|
||||
},
|
||||
{
|
||||
"label": "Arabic",
|
||||
"name": "ara"
|
||||
},
|
||||
{
|
||||
"label": "Russian",
|
||||
"name": "rus"
|
||||
},
|
||||
{
|
||||
"label": "Thai",
|
||||
"name": "tha"
|
||||
},
|
||||
{
|
||||
"label": "Dutch",
|
||||
"name": "nld"
|
||||
},
|
||||
{
|
||||
"label": "Italian",
|
||||
"name": "ita"
|
||||
},
|
||||
{
|
||||
"label": "Portuguese",
|
||||
"name": "por"
|
||||
},
|
||||
{
|
||||
"label": "Spanish",
|
||||
"name": "spa"
|
||||
},
|
||||
{
|
||||
"label": "Japanese",
|
||||
"name": "jpn"
|
||||
},
|
||||
{
|
||||
"label": "Polish",
|
||||
"name": "pol"
|
||||
},
|
||||
{
|
||||
"label": "Turkish",
|
||||
"name": "tur"
|
||||
},
|
||||
{
|
||||
"label": "Vietnamese",
|
||||
"name": "vie"
|
||||
},
|
||||
{
|
||||
"label": "Indonesian",
|
||||
"name": "ind"
|
||||
},
|
||||
{
|
||||
"label": "Czech",
|
||||
"name": "ces"
|
||||
},
|
||||
{
|
||||
"label": "Ukrainian",
|
||||
"name": "ukr"
|
||||
},
|
||||
{
|
||||
"label": "Greek",
|
||||
"name": "ell"
|
||||
},
|
||||
{
|
||||
"label": "Hebrew",
|
||||
"name": "heb"
|
||||
},
|
||||
{
|
||||
"label": "Farsi/Persian",
|
||||
"name": "fas"
|
||||
},
|
||||
{
|
||||
"label": "Hindi",
|
||||
"name": "hin"
|
||||
},
|
||||
{
|
||||
"label": "Urdu",
|
||||
"name": "urd"
|
||||
},
|
||||
{
|
||||
"label": "Swedish",
|
||||
"name": "swe"
|
||||
},
|
||||
{
|
||||
"label": "Bengali",
|
||||
"name": "ben"
|
||||
},
|
||||
{
|
||||
"label": "Malay",
|
||||
"name": "msa"
|
||||
},
|
||||
{
|
||||
"label": "Romanian",
|
||||
"name": "ron"
|
||||
}
|
||||
],
|
||||
"optional": true,
|
||||
"default": "eng",
|
||||
"id": "vectaraQAChain_0-input-responseLang-options"
|
||||
},
|
||||
{
|
||||
"label": "Max Summarized Results",
|
||||
"name": "maxSummarizedResults",
|
||||
"description": "Maximum results used to build the summarized response",
|
||||
"type": "number",
|
||||
"default": 7,
|
||||
"id": "vectaraQAChain_0-input-maxSummarizedResults-number"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Vectara Store",
|
||||
"name": "vectaraStore",
|
||||
"type": "VectorStore",
|
||||
"id": "vectaraQAChain_0-input-vectaraStore-VectorStore"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"vectaraStore": "{{vectara_1.data.instance}}",
|
||||
"summarizerPromptName": "vectara-experimental-summary-ext-2023-10-23-small",
|
||||
"responseLang": "eng",
|
||||
"maxSummarizedResults": 7
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "vectaraQAChain_0-output-vectaraQAChain-VectaraQAChain|BaseChain|Runnable",
|
||||
"name": "vectaraQAChain",
|
||||
"label": "VectaraQAChain",
|
||||
"type": "VectaraQAChain | BaseChain | Runnable"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 740.28434119739,
|
||||
"y": 164.93261446841598
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "vectaraQAChain_0",
|
||||
"label": "Vectara QA Chain",
|
||||
"version": 1,
|
||||
"name": "vectaraQAChain",
|
||||
"type": "VectaraQAChain",
|
||||
"baseClasses": [
|
||||
"VectaraQAChain",
|
||||
"BaseChain",
|
||||
"Runnable"
|
||||
],
|
||||
"category": "Chains",
|
||||
"description": "QA chain for Vectara",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Summarizer Prompt Name",
|
||||
"name": "summarizerPromptName",
|
||||
"description": "Summarize the results fetched from Vectara. Read <a target=\"_blank\" href=\"https://docs.vectara.com/docs/learn/grounded-generation/select-a-summarizer\">more</a>",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "vectara-summary-ext-v1.2.0 (gpt-3.5-turbo)",
|
||||
"name": "vectara-summary-ext-v1.2.0"
|
||||
},
|
||||
{
|
||||
"label": "vectara-experimental-summary-ext-2023-10-23-small (gpt-3.5-turbo)",
|
||||
"name": "vectara-experimental-summary-ext-2023-10-23-small",
|
||||
"description": "In beta, available to both Growth and Scale Vectara users"
|
||||
},
|
||||
{
|
||||
"label": "vectara-summary-ext-v1.3.0 (gpt-4.0)",
|
||||
"name": "vectara-summary-ext-v1.3.0",
|
||||
"description": "Only available to paying Scale Vectara users"
|
||||
},
|
||||
{
|
||||
"label": "vectara-experimental-summary-ext-2023-10-23-med (gpt-4.0)",
|
||||
"name": "vectara-experimental-summary-ext-2023-10-23-med",
|
||||
"description": "In beta, only available to paying Scale Vectara users"
|
||||
}
|
||||
],
|
||||
"default": "vectara-summary-ext-v1.2.0",
|
||||
"id": "vectaraQAChain_0-input-summarizerPromptName-options"
|
||||
{
|
||||
"width": 300,
|
||||
"height": 536,
|
||||
"id": "vectara_1",
|
||||
"position": {
|
||||
"x": 139.43135627266395,
|
||||
"y": 189.3685569634871
|
||||
},
|
||||
{
|
||||
"label": "Response Language",
|
||||
"name": "responseLang",
|
||||
"description": "Return the response in specific language. If not selected, Vectara will automatically detects the language. Read <a target=\"_blank\" href=\"https://docs.vectara.com/docs/learn/grounded-generation/grounded-generation-response-languages\">more</a>",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "English",
|
||||
"name": "eng"
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "vectara_1",
|
||||
"label": "Vectara",
|
||||
"version": 2,
|
||||
"name": "vectara",
|
||||
"type": "Vectara",
|
||||
"baseClasses": ["Vectara", "VectorStoreRetriever", "BaseRetriever"],
|
||||
"category": "Vector Stores",
|
||||
"description": "Upsert embedded data and perform similarity search upon query using Vectara, a LLM-powered search-as-a-service",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Connect Credential",
|
||||
"name": "credential",
|
||||
"type": "credential",
|
||||
"credentialNames": ["vectaraApi"],
|
||||
"id": "vectara_1-input-credential-credential"
|
||||
},
|
||||
{
|
||||
"label": "File",
|
||||
"name": "file",
|
||||
"description": "File to upload to Vectara. Supported file types: https://docs.vectara.com/docs/api-reference/indexing-apis/file-upload/file-upload-filetypes",
|
||||
"type": "file",
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-file-file"
|
||||
},
|
||||
{
|
||||
"label": "Metadata Filter",
|
||||
"name": "filter",
|
||||
"description": "Filter to apply to Vectara metadata. Refer to the <a target=\"_blank\" href=\"https://docs.flowiseai.com/vector-stores/vectara\">documentation</a> on how to use Vectara filters with Flowise.",
|
||||
"type": "string",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-filter-string"
|
||||
},
|
||||
{
|
||||
"label": "Sentences Before",
|
||||
"name": "sentencesBefore",
|
||||
"description": "Number of sentences to fetch before the matched sentence. Defaults to 2.",
|
||||
"type": "number",
|
||||
"default": 2,
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-sentencesBefore-number"
|
||||
},
|
||||
{
|
||||
"label": "Sentences After",
|
||||
"name": "sentencesAfter",
|
||||
"description": "Number of sentences to fetch after the matched sentence. Defaults to 2.",
|
||||
"type": "number",
|
||||
"default": 2,
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-sentencesAfter-number"
|
||||
},
|
||||
{
|
||||
"label": "Lambda",
|
||||
"name": "lambda",
|
||||
"description": "Enable hybrid search to improve retrieval accuracy by adjusting the balance (from 0 to 1) between neural search and keyword-based search factors.A value of 0.0 means that only neural search is used, while a value of 1.0 means that only keyword-based search is used. Defaults to 0.0 (neural only).",
|
||||
"default": 0,
|
||||
"type": "number",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-lambda-number"
|
||||
},
|
||||
{
|
||||
"label": "Top K",
|
||||
"name": "topK",
|
||||
"description": "Number of top results to fetch. Defaults to 5",
|
||||
"placeholder": "5",
|
||||
"type": "number",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-topK-number"
|
||||
},
|
||||
{
|
||||
"label": "MMR K",
|
||||
"name": "mmrK",
|
||||
"description": "Number of top results to fetch for MMR. Defaults to 50",
|
||||
"placeholder": "50",
|
||||
"type": "number",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-mmrK-number"
|
||||
},
|
||||
{
|
||||
"label": "MMR diversity bias",
|
||||
"name": "mmrDiversityBias",
|
||||
"step": 0.1,
|
||||
"description": "The diversity bias to use for MMR. This is a value between 0.0 and 1.0Values closer to 1.0 optimize for the most diverse results.Defaults to 0 (MMR disabled)",
|
||||
"placeholder": "0.0",
|
||||
"type": "number",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-mmrDiversityBias-number"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Document",
|
||||
"name": "document",
|
||||
"type": "Document",
|
||||
"list": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-document-Document"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"document": "",
|
||||
"filter": "",
|
||||
"sentencesBefore": 2,
|
||||
"sentencesAfter": 2,
|
||||
"lambda": "",
|
||||
"topK": "",
|
||||
"mmrK": "",
|
||||
"mmrDiversityBias": ""
|
||||
},
|
||||
{
|
||||
"label": "German",
|
||||
"name": "deu"
|
||||
"outputAnchors": [
|
||||
{
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "vectara_1-output-retriever-Vectara|VectorStoreRetriever|BaseRetriever",
|
||||
"name": "retriever",
|
||||
"label": "Vectara Retriever",
|
||||
"type": "Vectara | VectorStoreRetriever | BaseRetriever"
|
||||
},
|
||||
{
|
||||
"id": "vectara_1-output-vectorStore-Vectara|VectorStore",
|
||||
"name": "vectorStore",
|
||||
"label": "Vectara Vector Store",
|
||||
"type": "Vectara | VectorStore"
|
||||
}
|
||||
],
|
||||
"default": "retriever"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "vectorStore"
|
||||
},
|
||||
{
|
||||
"label": "French",
|
||||
"name": "fra"
|
||||
},
|
||||
{
|
||||
"label": "Chinese",
|
||||
"name": "zho"
|
||||
},
|
||||
{
|
||||
"label": "Korean",
|
||||
"name": "kor"
|
||||
},
|
||||
{
|
||||
"label": "Arabic",
|
||||
"name": "ara"
|
||||
},
|
||||
{
|
||||
"label": "Russian",
|
||||
"name": "rus"
|
||||
},
|
||||
{
|
||||
"label": "Thai",
|
||||
"name": "tha"
|
||||
},
|
||||
{
|
||||
"label": "Dutch",
|
||||
"name": "nld"
|
||||
},
|
||||
{
|
||||
"label": "Italian",
|
||||
"name": "ita"
|
||||
},
|
||||
{
|
||||
"label": "Portuguese",
|
||||
"name": "por"
|
||||
},
|
||||
{
|
||||
"label": "Spanish",
|
||||
"name": "spa"
|
||||
},
|
||||
{
|
||||
"label": "Japanese",
|
||||
"name": "jpn"
|
||||
},
|
||||
{
|
||||
"label": "Polish",
|
||||
"name": "pol"
|
||||
},
|
||||
{
|
||||
"label": "Turkish",
|
||||
"name": "tur"
|
||||
},
|
||||
{
|
||||
"label": "Vietnamese",
|
||||
"name": "vie"
|
||||
},
|
||||
{
|
||||
"label": "Indonesian",
|
||||
"name": "ind"
|
||||
},
|
||||
{
|
||||
"label": "Czech",
|
||||
"name": "ces"
|
||||
},
|
||||
{
|
||||
"label": "Ukrainian",
|
||||
"name": "ukr"
|
||||
},
|
||||
{
|
||||
"label": "Greek",
|
||||
"name": "ell"
|
||||
},
|
||||
{
|
||||
"label": "Hebrew",
|
||||
"name": "heb"
|
||||
},
|
||||
{
|
||||
"label": "Farsi/Persian",
|
||||
"name": "fas"
|
||||
},
|
||||
{
|
||||
"label": "Hindi",
|
||||
"name": "hin"
|
||||
},
|
||||
{
|
||||
"label": "Urdu",
|
||||
"name": "urd"
|
||||
},
|
||||
{
|
||||
"label": "Swedish",
|
||||
"name": "swe"
|
||||
},
|
||||
{
|
||||
"label": "Bengali",
|
||||
"name": "ben"
|
||||
},
|
||||
{
|
||||
"label": "Malay",
|
||||
"name": "msa"
|
||||
},
|
||||
{
|
||||
"label": "Romanian",
|
||||
"name": "ron"
|
||||
}
|
||||
],
|
||||
"optional": true,
|
||||
"default": "eng",
|
||||
"id": "vectaraQAChain_0-input-responseLang-options"
|
||||
"selected": false
|
||||
},
|
||||
{
|
||||
"label": "Max Summarized Results",
|
||||
"name": "maxSummarizedResults",
|
||||
"description": "Maximum results used to build the summarized response",
|
||||
"type": "number",
|
||||
"default": 7,
|
||||
"id": "vectaraQAChain_0-input-maxSummarizedResults-number"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Vectara Store",
|
||||
"name": "vectaraStore",
|
||||
"type": "VectorStore",
|
||||
"id": "vectaraQAChain_0-input-vectaraStore-VectorStore"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"vectaraStore": "{{vectara_1.data.instance}}",
|
||||
"summarizerPromptName": "vectara-experimental-summary-ext-2023-10-23-small",
|
||||
"responseLang": "eng",
|
||||
"maxSummarizedResults": 7
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "vectaraQAChain_0-output-vectaraQAChain-VectaraQAChain|BaseChain|Runnable",
|
||||
"name": "vectaraQAChain",
|
||||
"label": "VectaraQAChain",
|
||||
"type": "VectaraQAChain | BaseChain | Runnable"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 740.28434119739,
|
||||
"y": 164.93261446841598
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 536,
|
||||
"id": "vectara_1",
|
||||
"position": {
|
||||
"x": 139.43135627266395,
|
||||
"y": 189.3685569634871
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "vectara_1",
|
||||
"label": "Vectara",
|
||||
"version": 2,
|
||||
"name": "vectara",
|
||||
"type": "Vectara",
|
||||
"baseClasses": [
|
||||
"Vectara",
|
||||
"VectorStoreRetriever",
|
||||
"BaseRetriever"
|
||||
],
|
||||
"category": "Vector Stores",
|
||||
"description": "Upsert embedded data and perform similarity search upon query using Vectara, a LLM-powered search-as-a-service",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Connect Credential",
|
||||
"name": "credential",
|
||||
"type": "credential",
|
||||
"credentialNames": [
|
||||
"vectaraApi"
|
||||
],
|
||||
"id": "vectara_1-input-credential-credential"
|
||||
"positionAbsolute": {
|
||||
"x": 139.43135627266395,
|
||||
"y": 189.3685569634871
|
||||
},
|
||||
{
|
||||
"label": "File",
|
||||
"name": "file",
|
||||
"description": "File to upload to Vectara. Supported file types: https://docs.vectara.com/docs/api-reference/indexing-apis/file-upload/file-upload-filetypes",
|
||||
"type": "file",
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-file-file"
|
||||
},
|
||||
{
|
||||
"label": "Metadata Filter",
|
||||
"name": "filter",
|
||||
"description": "Filter to apply to Vectara metadata. Refer to the <a target=\"_blank\" href=\"https://docs.flowiseai.com/vector-stores/vectara\">documentation</a> on how to use Vectara filters with Flowise.",
|
||||
"type": "string",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-filter-string"
|
||||
},
|
||||
{
|
||||
"label": "Sentences Before",
|
||||
"name": "sentencesBefore",
|
||||
"description": "Number of sentences to fetch before the matched sentence. Defaults to 2.",
|
||||
"type": "number",
|
||||
"default": 2,
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-sentencesBefore-number"
|
||||
},
|
||||
{
|
||||
"label": "Sentences After",
|
||||
"name": "sentencesAfter",
|
||||
"description": "Number of sentences to fetch after the matched sentence. Defaults to 2.",
|
||||
"type": "number",
|
||||
"default": 2,
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-sentencesAfter-number"
|
||||
},
|
||||
{
|
||||
"label": "Lambda",
|
||||
"name": "lambda",
|
||||
"description": "Enable hybrid search to improve retrieval accuracy by adjusting the balance (from 0 to 1) between neural search and keyword-based search factors.A value of 0.0 means that only neural search is used, while a value of 1.0 means that only keyword-based search is used. Defaults to 0.0 (neural only).",
|
||||
"default": 0,
|
||||
"type": "number",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-lambda-number"
|
||||
},
|
||||
{
|
||||
"label": "Top K",
|
||||
"name": "topK",
|
||||
"description": "Number of top results to fetch. Defaults to 5",
|
||||
"placeholder": "5",
|
||||
"type": "number",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-topK-number"
|
||||
},
|
||||
{
|
||||
"label": "MMR K",
|
||||
"name": "mmrK",
|
||||
"description": "Number of top results to fetch for MMR. Defaults to 50",
|
||||
"placeholder": "50",
|
||||
"type": "number",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-mmrK-number"
|
||||
},
|
||||
{
|
||||
"label": "MMR diversity bias",
|
||||
"name": "mmrDiversityBias",
|
||||
"step": 0.1,
|
||||
"description": "The diversity bias to use for MMR. This is a value between 0.0 and 1.0Values closer to 1.0 optimize for the most diverse results.Defaults to 0 (MMR disabled)",
|
||||
"placeholder": "0.0",
|
||||
"type": "number",
|
||||
"additionalParams": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-mmrDiversityBias-number"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Document",
|
||||
"name": "document",
|
||||
"type": "Document",
|
||||
"list": true,
|
||||
"optional": true,
|
||||
"id": "vectara_1-input-document-Document"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"document": "",
|
||||
"filter": "",
|
||||
"sentencesBefore": 2,
|
||||
"sentencesAfter": 2,
|
||||
"lambda": "",
|
||||
"topK": "",
|
||||
"mmrK": "",
|
||||
"mmrDiversityBias": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "vectara_1-output-retriever-Vectara|VectorStoreRetriever|BaseRetriever",
|
||||
"name": "retriever",
|
||||
"label": "Vectara Retriever",
|
||||
"type": "Vectara | VectorStoreRetriever | BaseRetriever"
|
||||
},
|
||||
{
|
||||
"id": "vectara_1-output-vectorStore-Vectara|VectorStore",
|
||||
"name": "vectorStore",
|
||||
"label": "Vectara Vector Store",
|
||||
"type": "Vectara | VectorStore"
|
||||
}
|
||||
],
|
||||
"default": "retriever"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "vectorStore"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"positionAbsolute": {
|
||||
"x": 139.43135627266395,
|
||||
"y": 189.3685569634871
|
||||
},
|
||||
"selected": false,
|
||||
"dragging": false
|
||||
}
|
||||
"selected": false,
|
||||
"dragging": false
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"source": "vectara_1",
|
||||
"sourceHandle": "vectara_1-output-vectorStore-Vectara|VectorStore",
|
||||
"target": "vectaraQAChain_0",
|
||||
"targetHandle": "vectaraQAChain_0-input-vectaraStore-VectorStore",
|
||||
"type": "buttonedge",
|
||||
"id": "vectara_1-vectara_1-output-vectorStore-Vectara|VectorStore-vectaraQAChain_0-vectaraQAChain_0-input-vectaraStore-VectorStore"
|
||||
}
|
||||
{
|
||||
"source": "vectara_1",
|
||||
"sourceHandle": "vectara_1-output-vectorStore-Vectara|VectorStore",
|
||||
"target": "vectaraQAChain_0",
|
||||
"targetHandle": "vectaraQAChain_0-input-vectaraStore-VectorStore",
|
||||
"type": "buttonedge",
|
||||
"id": "vectara_1-vectara_1-output-vectorStore-Vectara|VectorStore-vectaraQAChain_0-vectaraQAChain_0-input-vectaraStore-VectorStore"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue