Merge pull request #1259 from FlowiseAI/feature/VectaraChain
Feature/Add vectara chain
This commit is contained in:
commit
98eddee2a2
|
|
@ -0,0 +1,307 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { VectorDBQAChain } from 'langchain/chains'
|
||||
import { Document } from 'langchain/document'
|
||||
import { VectaraStore } from 'langchain/vectorstores/vectara'
|
||||
import fetch from 'node-fetch'
|
||||
|
||||
class VectaraChain_Chains implements INode {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
description: string
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Vectara QA Chain'
|
||||
this.name = 'vectaraQAChain'
|
||||
this.version = 1.0
|
||||
this.type = 'VectaraQAChain'
|
||||
this.icon = 'vectara.png'
|
||||
this.category = 'Chains'
|
||||
this.description = 'QA chain for Vectara'
|
||||
this.baseClasses = [this.type, ...getBaseClasses(VectorDBQAChain)]
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Vectara Store',
|
||||
name: 'vectaraStore',
|
||||
type: 'VectorStore'
|
||||
},
|
||||
{
|
||||
label: 'Summarizer Prompt Name',
|
||||
name: 'summarizerPromptName',
|
||||
description:
|
||||
'Summarize the results fetched from Vectara. Read <a target="_blank" href="https://docs.vectara.com/docs/learn/grounded-generation/select-a-summarizer">more</a>',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
label: 'vectara-summary-ext-v1.2.0 (gpt-3.5-turbo)',
|
||||
name: 'vectara-summary-ext-v1.2.0'
|
||||
},
|
||||
{
|
||||
label: 'vectara-experimental-summary-ext-2023-10-23-small (gpt-3.5-turbo)',
|
||||
name: 'vectara-experimental-summary-ext-2023-10-23-small',
|
||||
description: 'In beta, available to both Growth and Scale Vectara users'
|
||||
},
|
||||
{
|
||||
label: 'vectara-summary-ext-v1.3.0 (gpt-4.0)',
|
||||
name: 'vectara-summary-ext-v1.3.0',
|
||||
description: 'Only available to paying Scale Vectara users'
|
||||
},
|
||||
{
|
||||
label: 'vectara-experimental-summary-ext-2023-10-23-med (gpt-4.0)',
|
||||
name: 'vectara-experimental-summary-ext-2023-10-23-med',
|
||||
description: 'In beta, only available to paying Scale Vectara users'
|
||||
}
|
||||
],
|
||||
default: 'vectara-summary-ext-v1.2.0'
|
||||
},
|
||||
{
|
||||
label: 'Response Language',
|
||||
name: 'responseLang',
|
||||
description:
|
||||
'Return the response in specific language. If not selected, Vectara will automatically detects the language. Read <a target="_blank" href="https://docs.vectara.com/docs/learn/grounded-generation/grounded-generation-response-languages">more</a>',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
label: 'English',
|
||||
name: 'eng'
|
||||
},
|
||||
{
|
||||
label: 'German',
|
||||
name: 'deu'
|
||||
},
|
||||
{
|
||||
label: 'French',
|
||||
name: 'fra'
|
||||
},
|
||||
{
|
||||
label: 'Chinese',
|
||||
name: 'zho'
|
||||
},
|
||||
{
|
||||
label: 'Korean',
|
||||
name: 'kor'
|
||||
},
|
||||
{
|
||||
label: 'Arabic',
|
||||
name: 'ara'
|
||||
},
|
||||
{
|
||||
label: 'Russian',
|
||||
name: 'rus'
|
||||
},
|
||||
{
|
||||
label: 'Thai',
|
||||
name: 'tha'
|
||||
},
|
||||
{
|
||||
label: 'Dutch',
|
||||
name: 'nld'
|
||||
},
|
||||
{
|
||||
label: 'Italian',
|
||||
name: 'ita'
|
||||
},
|
||||
{
|
||||
label: 'Portuguese',
|
||||
name: 'por'
|
||||
},
|
||||
{
|
||||
label: 'Spanish',
|
||||
name: 'spa'
|
||||
},
|
||||
{
|
||||
label: 'Japanese',
|
||||
name: 'jpn'
|
||||
},
|
||||
{
|
||||
label: 'Polish',
|
||||
name: 'pol'
|
||||
},
|
||||
{
|
||||
label: 'Turkish',
|
||||
name: 'tur'
|
||||
},
|
||||
{
|
||||
label: 'Vietnamese',
|
||||
name: 'vie'
|
||||
},
|
||||
{
|
||||
label: 'Indonesian',
|
||||
name: 'ind'
|
||||
},
|
||||
{
|
||||
label: 'Czech',
|
||||
name: 'ces'
|
||||
},
|
||||
{
|
||||
label: 'Ukrainian',
|
||||
name: 'ukr'
|
||||
},
|
||||
{
|
||||
label: 'Greek',
|
||||
name: 'ell'
|
||||
},
|
||||
{
|
||||
label: 'Hebrew',
|
||||
name: 'heb'
|
||||
},
|
||||
{
|
||||
label: 'Farsi/Persian',
|
||||
name: 'fas'
|
||||
},
|
||||
{
|
||||
label: 'Hindi',
|
||||
name: 'hin'
|
||||
},
|
||||
{
|
||||
label: 'Urdu',
|
||||
name: 'urd'
|
||||
},
|
||||
{
|
||||
label: 'Swedish',
|
||||
name: 'swe'
|
||||
},
|
||||
{
|
||||
label: 'Bengali',
|
||||
name: 'ben'
|
||||
},
|
||||
{
|
||||
label: 'Malay',
|
||||
name: 'msa'
|
||||
},
|
||||
{
|
||||
label: 'Romanian',
|
||||
name: 'ron'
|
||||
}
|
||||
],
|
||||
optional: true,
|
||||
default: 'eng'
|
||||
},
|
||||
{
|
||||
label: 'Max Summarized Results',
|
||||
name: 'maxSummarizedResults',
|
||||
description: 'Maximum results used to build the summarized response',
|
||||
type: 'number',
|
||||
default: 7
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(): Promise<any> {
|
||||
return null
|
||||
}
|
||||
|
||||
async run(nodeData: INodeData, input: string): Promise<object> {
|
||||
const vectorStore = nodeData.inputs?.vectaraStore as VectaraStore
|
||||
const responseLang = (nodeData.inputs?.responseLang as string) ?? 'auto'
|
||||
const summarizerPromptName = nodeData.inputs?.summarizerPromptName as string
|
||||
const maxSummarizedResultsStr = nodeData.inputs?.maxSummarizedResults as string
|
||||
const maxSummarizedResults = maxSummarizedResultsStr ? parseInt(maxSummarizedResultsStr, 10) : 7
|
||||
|
||||
const topK = (vectorStore as any)?.k ?? 10
|
||||
|
||||
const headers = await vectorStore.getJsonHeader()
|
||||
const vectaraFilter = (vectorStore as any).vectaraFilter ?? {}
|
||||
const corpusId: number[] = (vectorStore as any).corpusId ?? []
|
||||
const customerId = (vectorStore as any).customerId ?? ''
|
||||
|
||||
const corpusKeys = corpusId.map((corpusId) => ({
|
||||
customerId,
|
||||
corpusId,
|
||||
metadataFilter: vectaraFilter?.filter ?? '',
|
||||
lexicalInterpolationConfig: { lambda: vectaraFilter?.lambda ?? 0.025 }
|
||||
}))
|
||||
|
||||
const data = {
|
||||
query: [
|
||||
{
|
||||
query: input,
|
||||
start: 0,
|
||||
numResults: topK,
|
||||
contextConfig: {
|
||||
sentencesAfter: vectaraFilter?.contextConfig?.sentencesAfter ?? 2,
|
||||
sentencesBefore: vectaraFilter?.contextConfig?.sentencesBefore ?? 2
|
||||
},
|
||||
corpusKey: corpusKeys,
|
||||
summary: [
|
||||
{
|
||||
summarizerPromptName,
|
||||
responseLang,
|
||||
maxSummarizedResults
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
try {
|
||||
const response = await fetch(`https://api.vectara.io/v1/query`, {
|
||||
method: 'POST',
|
||||
headers: headers?.headers,
|
||||
body: JSON.stringify(data)
|
||||
})
|
||||
|
||||
if (response.status !== 200) {
|
||||
throw new Error(`Vectara API returned status code ${response.status}`)
|
||||
}
|
||||
|
||||
const result = await response.json()
|
||||
const responses = result.responseSet[0].response
|
||||
const documents = result.responseSet[0].document
|
||||
let summarizedText = ''
|
||||
|
||||
for (let i = 0; i < responses.length; i += 1) {
|
||||
const responseMetadata = responses[i].metadata
|
||||
const documentMetadata = documents[responses[i].documentIndex].metadata
|
||||
const combinedMetadata: Record<string, unknown> = {}
|
||||
|
||||
responseMetadata.forEach((item: { name: string; value: unknown }) => {
|
||||
combinedMetadata[item.name] = item.value
|
||||
})
|
||||
|
||||
documentMetadata.forEach((item: { name: string; value: unknown }) => {
|
||||
combinedMetadata[item.name] = item.value
|
||||
})
|
||||
|
||||
responses[i].metadata = combinedMetadata
|
||||
}
|
||||
|
||||
const summaryStatus = result.responseSet[0].summary[0].status
|
||||
if (summaryStatus.length > 0 && summaryStatus[0].code === 'BAD_REQUEST') {
|
||||
throw new Error(
|
||||
`BAD REQUEST: Too much text for the summarizer to summarize. Please try reducing the number of search results to summarize, or the context of each result by adjusting the 'summary_num_sentences', and 'summary_num_results' parameters respectively.`
|
||||
)
|
||||
}
|
||||
|
||||
if (
|
||||
summaryStatus.length > 0 &&
|
||||
summaryStatus[0].code === 'NOT_FOUND' &&
|
||||
summaryStatus[0].statusDetail === 'Failed to retrieve summarizer.'
|
||||
) {
|
||||
throw new Error(`BAD REQUEST: summarizer ${summarizerPromptName} is invalid for this account.`)
|
||||
}
|
||||
|
||||
summarizedText = result.responseSet[0].summary[0]?.text
|
||||
|
||||
const sourceDocuments: Document[] = responses.map(
|
||||
(response: { text: string; metadata: Record<string, unknown>; score: number }) =>
|
||||
new Document({
|
||||
pageContent: response.text,
|
||||
metadata: response.metadata
|
||||
})
|
||||
)
|
||||
|
||||
return { text: summarizedText, sourceDocuments: sourceDocuments }
|
||||
} catch (error) {
|
||||
throw new Error(error)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: VectaraChain_Chains }
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 66 KiB |
|
|
@ -842,7 +842,7 @@ export const isFlowValidForStream = (reactFlowNodes: IReactFlowNode[], endingNod
|
|||
let isValidChainOrAgent = false
|
||||
if (endingNodeData.category === 'Chains') {
|
||||
// Chains that are not available to stream
|
||||
const blacklistChains = ['openApiChain']
|
||||
const blacklistChains = ['openApiChain', 'vectaraQAChain']
|
||||
isValidChainOrAgent = !blacklistChains.includes(endingNodeData.name)
|
||||
} else if (endingNodeData.category === 'Agents') {
|
||||
// Agent that are available to stream
|
||||
|
|
|
|||
|
|
@ -699,7 +699,10 @@ const ViewMessagesDialog = ({ show, dialogProps, onCancel }) => {
|
|||
{message.sourceDocuments && (
|
||||
<div style={{ display: 'block', flexDirection: 'row', width: '100%' }}>
|
||||
{removeDuplicateURL(message).map((source, index) => {
|
||||
const URL = isValidURL(source.metadata.source)
|
||||
const URL =
|
||||
source.metadata && source.metadata.source
|
||||
? isValidURL(source.metadata.source)
|
||||
: undefined
|
||||
return (
|
||||
<Chip
|
||||
size='small'
|
||||
|
|
|
|||
|
|
@ -423,12 +423,16 @@ export const removeDuplicateURL = (message) => {
|
|||
if (!message.sourceDocuments) return newSourceDocuments
|
||||
|
||||
message.sourceDocuments.forEach((source) => {
|
||||
if (source.metadata && source.metadata.source) {
|
||||
if (isValidURL(source.metadata.source) && !visitedURLs.includes(source.metadata.source)) {
|
||||
visitedURLs.push(source.metadata.source)
|
||||
newSourceDocuments.push(source)
|
||||
} else if (!isValidURL(source.metadata.source)) {
|
||||
newSourceDocuments.push(source)
|
||||
}
|
||||
} else {
|
||||
newSourceDocuments.push(source)
|
||||
}
|
||||
})
|
||||
return newSourceDocuments
|
||||
}
|
||||
|
|
|
|||
|
|
@ -379,7 +379,10 @@ export const ChatMessage = ({ open, chatflowid, isDialog }) => {
|
|||
{message.sourceDocuments && (
|
||||
<div style={{ display: 'block', flexDirection: 'row', width: '100%' }}>
|
||||
{removeDuplicateURL(message).map((source, index) => {
|
||||
const URL = isValidURL(source.metadata.source)
|
||||
const URL =
|
||||
source.metadata && source.metadata.source
|
||||
? isValidURL(source.metadata.source)
|
||||
: undefined
|
||||
return (
|
||||
<Chip
|
||||
size='small'
|
||||
|
|
|
|||
Loading…
Reference in New Issue