update autogpt

This commit is contained in:
Henry 2023-08-30 11:37:28 +01:00
parent 0423fc25ac
commit a4f9b75d04
2 changed files with 103 additions and 2 deletions

View File

@ -2,8 +2,15 @@ import { INode, INodeData, INodeParams } from '../../../src/Interface'
import { BaseChatModel } from 'langchain/chat_models/base'
import { AutoGPT } from 'langchain/experimental/autogpt'
import { Tool } from 'langchain/tools'
import { AIMessage, HumanMessage, SystemMessage } from 'langchain/schema'
import { VectorStoreRetriever } from 'langchain/vectorstores/base'
import { flatten } from 'lodash'
import { StructuredTool } from 'langchain/tools'
import { LLMChain } from 'langchain/chains'
import { PromptTemplate } from 'langchain/prompts'
type ObjectTool = StructuredTool
const FINISH_NAME = 'finish'
class AutoGPT_Agents implements INode {
label: string
@ -88,13 +95,107 @@ class AutoGPT_Agents implements INode {
async run(nodeData: INodeData, input: string): Promise<string> {
const executor = nodeData.instance as AutoGPT
const model = nodeData.inputs?.model as BaseChatModel
try {
let totalAssistantReply = ''
executor.run = async (goals: string[]): Promise<string | undefined> => {
const user_input = 'Determine which next command to use, and respond using the format specified above:'
let loopCount = 0
while (loopCount < executor.maxIterations) {
loopCount += 1
const { text: assistantReply } = await executor.chain.call({
goals,
user_input,
memory: executor.memory,
messages: executor.fullMessageHistory
})
// eslint-disable-next-line no-console
console.log('\x1b[92m\x1b[1m\n*****AutoGPT*****\n\x1b[0m\x1b[0m')
// eslint-disable-next-line no-console
console.log(assistantReply)
totalAssistantReply += assistantReply + '\n'
executor.fullMessageHistory.push(new HumanMessage(user_input))
executor.fullMessageHistory.push(new AIMessage(assistantReply))
const action = await executor.outputParser.parse(assistantReply)
const tools = executor.tools.reduce((acc, tool) => ({ ...acc, [tool.name]: tool }), {} as { [key: string]: ObjectTool })
if (action.name === FINISH_NAME) {
return action.args.response
}
let result: string
if (action.name in tools) {
const tool = tools[action.name]
let observation
try {
observation = await tool.call(action.args)
} catch (e) {
observation = `Error in args: ${e}`
}
result = `Command ${tool.name} returned: ${observation}`
} else if (action.name === 'ERROR') {
result = `Error: ${action.args}. `
} else {
result = `Unknown command '${action.name}'. Please refer to the 'COMMANDS' list for available commands and only respond in the specified JSON format.`
}
let memoryToAdd = `Assistant Reply: ${assistantReply}\nResult: ${result} `
if (executor.feedbackTool) {
const feedback = `\n${await executor.feedbackTool.call('Input: ')}`
if (feedback === 'q' || feedback === 'stop') {
return 'EXITING'
}
memoryToAdd += feedback
}
const documents = await executor.textSplitter.createDocuments([memoryToAdd])
await executor.memory.addDocuments(documents)
executor.fullMessageHistory.push(new SystemMessage(result))
}
return undefined
}
const res = await executor.run([input])
return res || 'I have completed all my tasks.'
if (!res) {
const sentence = `Unfortunately I was not able to complete all the task. Here is the chain of thoughts:`
return `${await rephraseString(sentence, model)}\n\`\`\`javascript\n${totalAssistantReply}\n\`\`\`\n`
}
const sentence = `I have completed all my tasks. Here is the chain of thoughts:`
let writeFilePath = ''
const writeTool = executor.tools.find((tool) => tool.name === 'write_file')
if (executor.tools.length && writeTool) {
writeFilePath = (writeTool as any).store.basePath
}
return `${await rephraseString(
sentence,
model
)}\n\`\`\`javascript\n${totalAssistantReply}\n\`\`\`\nAnd the final result:\n\`\`\`javascript\n${res}\n\`\`\`\n${
writeFilePath
? await rephraseString(
`You can download the final result displayed above, or see if a new file has been successfully written to \`${writeFilePath}\``,
model
)
: ''
}`
} catch (e) {
throw new Error(e)
}
}
}
const rephraseString = async (sentence: string, model: BaseChatModel) => {
const promptTemplate = new PromptTemplate({
template: 'You are a helpful Assistant that rephrase a sentence: {sentence}',
inputVariables: ['sentence']
})
const chain = new LLMChain({ llm: model, prompt: promptTemplate })
const res = await chain.call({ sentence })
return res?.text
}
module.exports = { nodeClass: AutoGPT_Agents }

View File

@ -481,7 +481,7 @@ export const isStartNodeDependOnInput = (startingNodes: IReactFlowNode[], nodes:
if (inputVariables.length > 0) return true
}
}
const whitelistNodeNames = ['vectorStoreToDocument']
const whitelistNodeNames = ['vectorStoreToDocument', 'autoGPT']
for (const node of nodes) {
if (whitelistNodeNames.includes(node.data.name)) return true
}