Merge branch 'FlowiseAI:main' into bug/ChatInput
|
|
@ -1,6 +1,6 @@
|
|||
# These are supported funding model platforms
|
||||
|
||||
github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
|
||||
github: [FlowiseAI] # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
|
||||
patreon: # Replace with a single Patreon username
|
||||
open_collective: # Replace with a single Open Collective username
|
||||
ko_fi: # Replace with a single Ko-fi username
|
||||
|
|
|
|||
|
|
@ -1,11 +1,11 @@
|
|||
<!-- markdownlint-disable MD030 -->
|
||||
|
||||
# Flowise - LangchainJS UI
|
||||
# Flowise
|
||||
|
||||
<a href="https://github.com/FlowiseAI/Flowise">
|
||||
<img width="100%" src="https://github.com/FlowiseAI/Flowise/blob/main/images/flowise.gif?raw=true"></a>
|
||||
|
||||
Drag & drop UI to build your customized LLM flow using [LangchainJS](https://github.com/hwchase17/langchainjs)
|
||||
Drag & drop UI to build your customized LLM flow
|
||||
|
||||
## ⚡Quick Start
|
||||
|
||||
|
|
|
|||
|
|
@ -1,3 +1,7 @@
|
|||
PORT=3000
|
||||
# FLOWISE_USERNAME=user
|
||||
# FLOWISE_PASSWORD=1234
|
||||
# DEBUG=true
|
||||
# DATABASE_PATH=/your_database_path/.flowise
|
||||
# APIKEY_PATH=/your_api_key_path/.flowise
|
||||
# EXECUTION_MODE=child or main
|
||||
|
|
@ -8,6 +8,10 @@ services:
|
|||
- PORT=${PORT}
|
||||
- FLOWISE_USERNAME=${FLOWISE_USERNAME}
|
||||
- FLOWISE_PASSWORD=${FLOWISE_PASSWORD}
|
||||
- DATABASE_PATH=${DATABASE_PATH}
|
||||
- APIKEY_PATH=${APIKEY_PATH}
|
||||
- EXECUTION_MODE=${EXECUTION_MODE}
|
||||
- DEBUG=${DEBUG}
|
||||
ports:
|
||||
- '${PORT}:${PORT}'
|
||||
volumes:
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"name": "flowise",
|
||||
"version": "1.2.12",
|
||||
"version": "1.2.14",
|
||||
"private": true,
|
||||
"homepage": "https://flowiseai.com",
|
||||
"workspaces": [
|
||||
|
|
|
|||
|
|
@ -1 +0,0 @@
|
|||
DEBUG=true
|
||||
|
|
@ -12,14 +12,6 @@ Install:
|
|||
npm i flowise-components
|
||||
```
|
||||
|
||||
## Debug
|
||||
|
||||
To view all the logs, create an `.env` file and add:
|
||||
|
||||
```
|
||||
DEBUG=true
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
Source code in this repository is made available under the [MIT License](https://github.com/FlowiseAI/Flowise/blob/master/LICENSE.md).
|
||||
|
|
|
|||
|
|
@ -1,9 +1,10 @@
|
|||
import { ICommonObject, INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { ICommonObject, IMessage, INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { initializeAgentExecutorWithOptions, AgentExecutor } from 'langchain/agents'
|
||||
import { Tool } from 'langchain/tools'
|
||||
import { CustomChainHandler, getBaseClasses } from '../../../src/utils'
|
||||
import { BaseLanguageModel } from 'langchain/base_language'
|
||||
import { flatten } from 'lodash'
|
||||
import { BaseChatMemory, ChatMessageHistory } from 'langchain/memory'
|
||||
import { AIChatMessage, HumanChatMessage } from 'langchain/schema'
|
||||
|
||||
class OpenAIFunctionAgent_Agents implements INode {
|
||||
label: string
|
||||
|
|
@ -30,30 +31,67 @@ class OpenAIFunctionAgent_Agents implements INode {
|
|||
type: 'Tool',
|
||||
list: true
|
||||
},
|
||||
{
|
||||
label: 'Memory',
|
||||
name: 'memory',
|
||||
type: 'BaseChatMemory'
|
||||
},
|
||||
{
|
||||
label: 'OpenAI Chat Model',
|
||||
name: 'model',
|
||||
description:
|
||||
'Only works with gpt-3.5-turbo-0613 and gpt-4-0613. Refer <a target="_blank" href="https://platform.openai.com/docs/guides/gpt/function-calling">docs</a> for more info',
|
||||
type: 'BaseChatModel'
|
||||
},
|
||||
{
|
||||
label: 'System Message',
|
||||
name: 'systemMessage',
|
||||
type: 'string',
|
||||
rows: 4,
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const model = nodeData.inputs?.model as BaseLanguageModel
|
||||
let tools = nodeData.inputs?.tools as Tool[]
|
||||
const memory = nodeData.inputs?.memory as BaseChatMemory
|
||||
const systemMessage = nodeData.inputs?.systemMessage as string
|
||||
|
||||
let tools = nodeData.inputs?.tools
|
||||
tools = flatten(tools)
|
||||
|
||||
const executor = await initializeAgentExecutorWithOptions(tools, model, {
|
||||
agentType: 'openai-functions',
|
||||
verbose: process.env.DEBUG === 'true' ? true : false
|
||||
verbose: process.env.DEBUG === 'true' ? true : false,
|
||||
agentArgs: {
|
||||
prefix: systemMessage ?? `You are a helpful AI assistant.`
|
||||
}
|
||||
})
|
||||
if (memory) executor.memory = memory
|
||||
|
||||
return executor
|
||||
}
|
||||
|
||||
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string> {
|
||||
const executor = nodeData.instance as AgentExecutor
|
||||
const memory = nodeData.inputs?.memory as BaseChatMemory
|
||||
|
||||
if (options && options.chatHistory) {
|
||||
const chatHistory = []
|
||||
const histories: IMessage[] = options.chatHistory
|
||||
|
||||
for (const message of histories) {
|
||||
if (message.type === 'apiMessage') {
|
||||
chatHistory.push(new AIChatMessage(message.message))
|
||||
} else if (message.type === 'userMessage') {
|
||||
chatHistory.push(new HumanChatMessage(message.message))
|
||||
}
|
||||
}
|
||||
memory.chatHistory = new ChatMessageHistory(chatHistory)
|
||||
executor.memory = memory
|
||||
}
|
||||
|
||||
if (options.socketIO && options.socketIOClientId) {
|
||||
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId)
|
||||
|
|
|
|||
|
|
@ -50,7 +50,7 @@ class LLMChain_Chains implements INode {
|
|||
{
|
||||
label: 'Output Prediction',
|
||||
name: 'outputPrediction',
|
||||
baseClasses: ['string']
|
||||
baseClasses: ['string', 'json']
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
|
|||
|
|
@ -43,6 +43,10 @@ class AzureChatOpenAI_ChatModels implements INode {
|
|||
{
|
||||
label: 'gpt-35-turbo',
|
||||
name: 'gpt-35-turbo'
|
||||
},
|
||||
{
|
||||
label: 'gpt-35-turbo-16k',
|
||||
name: 'gpt-35-turbo-16k'
|
||||
}
|
||||
],
|
||||
default: 'gpt-35-turbo',
|
||||
|
|
@ -70,14 +74,10 @@ class AzureChatOpenAI_ChatModels implements INode {
|
|||
{
|
||||
label: 'Azure OpenAI Api Version',
|
||||
name: 'azureOpenAIApiVersion',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
label: '2023-03-15-preview',
|
||||
name: '2023-03-15-preview'
|
||||
}
|
||||
],
|
||||
default: '2023-03-15-preview'
|
||||
type: 'string',
|
||||
placeholder: '2023-06-01-preview',
|
||||
description:
|
||||
'Description of Supported API Versions. Please refer <a target="_blank" href="https://learn.microsoft.com/en-us/azure/cognitive-services/openai/reference#chat-completions">examples</a>'
|
||||
},
|
||||
{
|
||||
label: 'Max Tokens',
|
||||
|
|
@ -124,7 +124,7 @@ class AzureChatOpenAI_ChatModels implements INode {
|
|||
const streaming = nodeData.inputs?.streaming as boolean
|
||||
|
||||
const obj: Partial<AzureOpenAIInput> & Partial<OpenAIBaseInput> = {
|
||||
temperature: parseInt(temperature, 10),
|
||||
temperature: parseFloat(temperature),
|
||||
modelName,
|
||||
azureOpenAIApiKey,
|
||||
azureOpenAIApiInstanceName,
|
||||
|
|
|
|||
|
|
@ -120,7 +120,7 @@ class ChatAnthropic_ChatModels implements INode {
|
|||
const streaming = nodeData.inputs?.streaming as boolean
|
||||
|
||||
const obj: Partial<AnthropicInput> & { anthropicApiKey?: string } = {
|
||||
temperature: parseInt(temperature, 10),
|
||||
temperature: parseFloat(temperature),
|
||||
modelName,
|
||||
anthropicApiKey,
|
||||
streaming: streaming ?? true
|
||||
|
|
|
|||
|
|
@ -89,7 +89,7 @@ class ChatHuggingFace_ChatModels implements INode {
|
|||
apiKey
|
||||
}
|
||||
|
||||
if (temperature) obj.temperature = parseInt(temperature, 10)
|
||||
if (temperature) obj.temperature = parseFloat(temperature)
|
||||
if (maxTokens) obj.maxTokens = parseInt(maxTokens, 10)
|
||||
if (topP) obj.topP = parseInt(topP, 10)
|
||||
if (hfTopK) obj.topK = parseInt(hfTopK, 10)
|
||||
|
|
|
|||
|
|
@ -74,7 +74,7 @@ class ChatLocalAI_ChatModels implements INode {
|
|||
const basePath = nodeData.inputs?.basePath as string
|
||||
|
||||
const obj: Partial<OpenAIChatInput> & { openAIApiKey?: string } = {
|
||||
temperature: parseInt(temperature, 10),
|
||||
temperature: parseFloat(temperature),
|
||||
modelName,
|
||||
openAIApiKey: 'sk-'
|
||||
}
|
||||
|
|
|
|||
|
|
@ -132,7 +132,7 @@ class ChatOpenAI_ChatModels implements INode {
|
|||
const basePath = nodeData.inputs?.basepath as string
|
||||
|
||||
const obj: Partial<OpenAIChatInput> & { openAIApiKey?: string } = {
|
||||
temperature: parseInt(temperature, 10),
|
||||
temperature: parseFloat(temperature),
|
||||
modelName,
|
||||
openAIApiKey,
|
||||
streaming: streaming ?? true
|
||||
|
|
|
|||
|
|
@ -0,0 +1,82 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { TextSplitter } from 'langchain/text_splitter'
|
||||
import { GitbookLoader } from 'langchain/document_loaders/web/gitbook'
|
||||
|
||||
class Gitbook_DocumentLoaders implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs?: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'GitBook'
|
||||
this.name = 'gitbook'
|
||||
this.type = 'Document'
|
||||
this.icon = 'gitbook.svg'
|
||||
this.category = 'Document Loaders'
|
||||
this.description = `Load data from GitBook`
|
||||
this.baseClasses = [this.type]
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Web Path',
|
||||
name: 'webPath',
|
||||
type: 'string',
|
||||
placeholder: 'https://docs.gitbook.com/product-tour/navigation',
|
||||
description: 'If want to load all paths from the GitBook provide only root path e.g.https://docs.gitbook.com/ '
|
||||
},
|
||||
{
|
||||
label: 'Should Load All Paths',
|
||||
name: 'shouldLoadAllPaths',
|
||||
type: 'boolean',
|
||||
description: 'Load from all paths in a given GitBook',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Text Splitter',
|
||||
name: 'textSplitter',
|
||||
type: 'TextSplitter',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Metadata',
|
||||
name: 'metadata',
|
||||
type: 'json',
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
}
|
||||
]
|
||||
}
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const webPath = nodeData.inputs?.webPath as string
|
||||
const shouldLoadAllPaths = nodeData.inputs?.shouldLoadAllPaths as boolean
|
||||
const textSplitter = nodeData.inputs?.textSplitter as TextSplitter
|
||||
const metadata = nodeData.inputs?.metadata
|
||||
|
||||
const loader = shouldLoadAllPaths ? new GitbookLoader(webPath, { shouldLoadAllPaths }) : new GitbookLoader(webPath)
|
||||
|
||||
const docs = textSplitter ? await loader.loadAndSplit() : await loader.load()
|
||||
|
||||
if (metadata) {
|
||||
const parsedMetadata = typeof metadata === 'object' ? metadata : JSON.parse(metadata)
|
||||
return docs.map((doc) => {
|
||||
return {
|
||||
...doc,
|
||||
metadata: {
|
||||
...doc.metadata,
|
||||
...parsedMetadata
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
return docs
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
nodeClass: Gitbook_DocumentLoaders
|
||||
}
|
||||
|
|
@ -0,0 +1 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" width="64" height="64"><switch><g><path d="M28.8 47.4c1 0 1.9.8 1.9 1.9 0 1-.8 1.9-1.9 1.9-1 0-1.9-.8-1.9-1.9 0-1.1.9-1.9 1.9-1.9m29.4-11.6c-1 0-1.9-.8-1.9-1.9 0-1 .8-1.9 1.9-1.9 1 0 1.9.8 1.9 1.9 0 1-.9 1.9-1.9 1.9m0-7.7c-3.2 0-5.8 2.6-5.8 5.8 0 .6.1 1.2.3 1.8L33.6 45.9c-1.1-1.6-2.9-2.5-4.8-2.5-2.2 0-4.2 1.3-5.2 3.2l-17.2-9c-1.8-1-3.2-3.9-3-6.7.1-1.4.6-2.5 1.3-2.9.5-.3 1-.2 1.7.1l.1.1c4.6 2.4 19.5 10.2 20.1 10.5 1 .4 1.5.6 3.2-.2l30.8-16c.5-.2 1-.6 1-1.3 0-.9-.9-1.3-.9-1.3-1.8-.8-4.5-2.1-7.1-3.3C48 14 41.6 11 38.8 9.5c-2.4-1.3-4.4-.2-4.7 0l-.7.3C20.7 16.2 3.9 24.5 2.9 25.1c-1.7 1-2.8 3.1-2.9 5.7-.2 4.1 1.9 8.4 4.9 9.9l18.2 9.4c.4 2.8 2.9 5 5.7 5 3.2 0 5.7-2.5 5.8-5.7l20-10.8c1 .8 2.3 1.2 3.6 1.2 3.2 0 5.8-2.6 5.8-5.8 0-3.3-2.6-5.9-5.8-5.9" fill="#4285fd"/></g></switch></svg>
|
||||
|
After Width: | Height: | Size: 826 B |
|
|
@ -0,0 +1,106 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { TextSplitter } from 'langchain/text_splitter'
|
||||
import { JSONLinesLoader } from 'langchain/document_loaders/fs/json'
|
||||
|
||||
class Jsonlines_DocumentLoaders implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Json Lines File'
|
||||
this.name = 'jsonlinesFile'
|
||||
this.type = 'Document'
|
||||
this.icon = 'jsonlines.svg'
|
||||
this.category = 'Document Loaders'
|
||||
this.description = `Load data from JSON Lines files`
|
||||
this.baseClasses = [this.type]
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Jsonlines File',
|
||||
name: 'jsonlinesFile',
|
||||
type: 'file',
|
||||
fileType: '.jsonl'
|
||||
},
|
||||
{
|
||||
label: 'Text Splitter',
|
||||
name: 'textSplitter',
|
||||
type: 'TextSplitter',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Pointer Extraction',
|
||||
name: 'pointerName',
|
||||
type: 'string',
|
||||
placeholder: 'Enter pointer name',
|
||||
optional: false
|
||||
},
|
||||
{
|
||||
label: 'Metadata',
|
||||
name: 'metadata',
|
||||
type: 'json',
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const textSplitter = nodeData.inputs?.textSplitter as TextSplitter
|
||||
const jsonLinesFileBase64 = nodeData.inputs?.jsonlinesFile as string
|
||||
const pointerName = nodeData.inputs?.pointerName as string
|
||||
const metadata = nodeData.inputs?.metadata
|
||||
|
||||
let alldocs = []
|
||||
let files: string[] = []
|
||||
|
||||
let pointer = '/' + pointerName.trim()
|
||||
|
||||
if (jsonLinesFileBase64.startsWith('[') && jsonLinesFileBase64.endsWith(']')) {
|
||||
files = JSON.parse(jsonLinesFileBase64)
|
||||
} else {
|
||||
files = [jsonLinesFileBase64]
|
||||
}
|
||||
|
||||
for (const file of files) {
|
||||
const splitDataURI = file.split(',')
|
||||
splitDataURI.pop()
|
||||
const bf = Buffer.from(splitDataURI.pop() || '', 'base64')
|
||||
const blob = new Blob([bf])
|
||||
const loader = new JSONLinesLoader(blob, pointer)
|
||||
|
||||
if (textSplitter) {
|
||||
const docs = await loader.loadAndSplit(textSplitter)
|
||||
alldocs.push(...docs)
|
||||
} else {
|
||||
const docs = await loader.load()
|
||||
alldocs.push(...docs)
|
||||
}
|
||||
}
|
||||
|
||||
if (metadata) {
|
||||
const parsedMetadata = typeof metadata === 'object' ? metadata : JSON.parse(metadata)
|
||||
let finaldocs = []
|
||||
for (const doc of alldocs) {
|
||||
const newdoc = {
|
||||
...doc,
|
||||
metadata: {
|
||||
...doc.metadata,
|
||||
...parsedMetadata
|
||||
}
|
||||
}
|
||||
finaldocs.push(newdoc)
|
||||
}
|
||||
return finaldocs
|
||||
}
|
||||
|
||||
return alldocs
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: Jsonlines_DocumentLoaders }
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
<svg width="24" height="24" xmlns="http://www.w3.org/2000/svg">
|
||||
<!-- Created with Method Draw - http://github.com/duopixel/Method-Draw/ -->
|
||||
|
||||
<g>
|
||||
<title>background</title>
|
||||
<rect fill="none" id="canvas_background" height="26" width="26" y="-1" x="-1"/>
|
||||
<g display="none" overflow="visible" y="0" x="0" height="100%" width="100%" id="canvasGrid">
|
||||
<rect fill="url(#gridpattern)" stroke-width="0" y="0" x="0" height="100%" width="100%"/>
|
||||
</g>
|
||||
</g>
|
||||
<g>
|
||||
<title>Layer 1</title>
|
||||
<text font-weight="bold" stroke="#000" transform="matrix(8.682896011956823,0,0,10.412942243751806,-30.866304860177404,-63.784276261342) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="1" id="svg_2" y="7.062874" x="3.579384" stroke-opacity="null" stroke-width="0" fill="#000000">JSON</text>
|
||||
<text font-weight="bold" stroke="#000" transform="matrix(9.059566511875573,0,0,9.893934811310315,-1.3962337706973242,-106.08964247698567) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="1" id="svg_3" y="12.90427" x="0.172236" stroke-opacity="null" stroke-width="0" fill="#000000">Lines</text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 1.2 KiB |
|
|
@ -43,7 +43,7 @@ class AzureOpenAIEmbedding_Embeddings implements INode {
|
|||
label: 'Azure OpenAI Api Version',
|
||||
name: 'azureOpenAIApiVersion',
|
||||
type: 'string',
|
||||
placeholder: 'YOUR-API-VERSION',
|
||||
placeholder: '2023-03-15-preview',
|
||||
description:
|
||||
'Description of Supported API Versions. Please refer <a target="_blank" href="https://learn.microsoft.com/en-us/azure/cognitive-services/openai/reference#embeddings">examples</a>'
|
||||
},
|
||||
|
|
|
|||
|
|
@ -105,18 +105,10 @@ class AzureOpenAI_LLMs implements INode {
|
|||
{
|
||||
label: 'Azure OpenAI Api Version',
|
||||
name: 'azureOpenAIApiVersion',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
label: '2023-03-15-preview',
|
||||
name: '2023-03-15-preview'
|
||||
},
|
||||
{
|
||||
label: '2022-12-01',
|
||||
name: '2022-12-01'
|
||||
}
|
||||
],
|
||||
default: '2023-03-15-preview'
|
||||
type: 'string',
|
||||
placeholder: '2023-06-01-preview',
|
||||
description:
|
||||
'Description of Supported API Versions. Please refer <a target="_blank" href="https://learn.microsoft.com/en-us/azure/cognitive-services/openai/reference#completions">examples</a>'
|
||||
},
|
||||
{
|
||||
label: 'Max Tokens',
|
||||
|
|
@ -179,7 +171,7 @@ class AzureOpenAI_LLMs implements INode {
|
|||
const streaming = nodeData.inputs?.streaming as boolean
|
||||
|
||||
const obj: Partial<AzureOpenAIInput> & Partial<OpenAIInput> = {
|
||||
temperature: parseInt(temperature, 10),
|
||||
temperature: parseFloat(temperature),
|
||||
modelName,
|
||||
azureOpenAIApiKey,
|
||||
azureOpenAIApiInstanceName,
|
||||
|
|
|
|||
|
|
@ -87,7 +87,7 @@ class Cohere_LLMs implements INode {
|
|||
|
||||
if (maxTokens) obj.maxTokens = parseInt(maxTokens, 10)
|
||||
if (modelName) obj.model = modelName
|
||||
if (temperature) obj.temperature = parseInt(temperature, 10)
|
||||
if (temperature) obj.temperature = parseFloat(temperature)
|
||||
|
||||
const model = new Cohere(obj)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -89,7 +89,7 @@ class HuggingFaceInference_LLMs implements INode {
|
|||
apiKey
|
||||
}
|
||||
|
||||
if (temperature) obj.temperature = parseInt(temperature, 10)
|
||||
if (temperature) obj.temperature = parseFloat(temperature)
|
||||
if (maxTokens) obj.maxTokens = parseInt(maxTokens, 10)
|
||||
if (topP) obj.topP = parseInt(topP, 10)
|
||||
if (hfTopK) obj.topK = parseInt(hfTopK, 10)
|
||||
|
|
|
|||
|
|
@ -132,7 +132,7 @@ class OpenAI_LLMs implements INode {
|
|||
const basePath = nodeData.inputs?.basepath as string
|
||||
|
||||
const obj: Partial<OpenAIInput> & { openAIApiKey?: string } = {
|
||||
temperature: parseInt(temperature, 10),
|
||||
temperature: parseFloat(temperature),
|
||||
modelName,
|
||||
openAIApiKey,
|
||||
streaming: streaming ?? true
|
||||
|
|
|
|||
|
|
@ -0,0 +1,100 @@
|
|||
import { ICommonObject, INode, INodeData, INodeParams, getBaseClasses } from '../../../src'
|
||||
import { DynamoDBChatMessageHistory } from 'langchain/stores/message/dynamodb'
|
||||
import { BufferMemory } from 'langchain/memory'
|
||||
|
||||
class DynamoDb_Memory implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'DynamoDB Memory'
|
||||
this.name = 'DynamoDbMemory'
|
||||
this.icon = 'dynamodb.svg'
|
||||
this.category = 'Memory'
|
||||
this.description = 'Stores the conversation in dynamo db table'
|
||||
this.baseClasses = [this.type, ...getBaseClasses(BufferMemory)]
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Table Name',
|
||||
name: 'tableName',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Partition Key',
|
||||
name: 'partitionKey',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Session ID',
|
||||
name: 'sessionId',
|
||||
type: 'string',
|
||||
description: 'if empty, chatId will be used automatically',
|
||||
default: '',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Region',
|
||||
name: 'region',
|
||||
type: 'string',
|
||||
description: 'The aws region in which table is located',
|
||||
placeholder: 'us-east-1'
|
||||
},
|
||||
{
|
||||
label: 'Access Key',
|
||||
name: 'accessKey',
|
||||
type: 'password'
|
||||
},
|
||||
{
|
||||
label: 'Secret Access Key',
|
||||
name: 'secretAccessKey',
|
||||
type: 'password'
|
||||
},
|
||||
{
|
||||
label: 'Memory Key',
|
||||
name: 'memoryKey',
|
||||
type: 'string',
|
||||
default: 'chat_history'
|
||||
}
|
||||
]
|
||||
}
|
||||
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
||||
const tableName = nodeData.inputs?.tableName as string
|
||||
const partitionKey = nodeData.inputs?.partitionKey as string
|
||||
const sessionId = nodeData.inputs?.sessionId as string
|
||||
const region = nodeData.inputs?.region as string
|
||||
const accessKey = nodeData.inputs?.accessKey as string
|
||||
const secretAccessKey = nodeData.inputs?.secretAccessKey as string
|
||||
const memoryKey = nodeData.inputs?.memoryKey as string
|
||||
|
||||
const chatId = options.chatId
|
||||
|
||||
const dynamoDb = new DynamoDBChatMessageHistory({
|
||||
tableName,
|
||||
partitionKey,
|
||||
sessionId: sessionId ? sessionId : chatId,
|
||||
config: {
|
||||
region,
|
||||
credentials: {
|
||||
accessKeyId: accessKey,
|
||||
secretAccessKey
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
const memory = new BufferMemory({
|
||||
memoryKey,
|
||||
chatHistory: dynamoDb,
|
||||
returnMessages: true
|
||||
})
|
||||
return memory
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: DynamoDb_Memory }
|
||||
|
|
@ -0,0 +1,18 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg width="24px" height="24px" viewBox="0 0 24 24" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<!-- Generator: Sketch 64 (93537) - https://sketch.com -->
|
||||
<title>Icon-Architecture/16/Arch_Amazon-DynamoDB_16</title>
|
||||
<desc>Created with Sketch.</desc>
|
||||
<defs>
|
||||
<linearGradient x1="0%" y1="100%" x2="100%" y2="0%" id="linearGradient-1">
|
||||
<stop stop-color="#2E27AD" offset="0%"></stop>
|
||||
<stop stop-color="#527FFF" offset="100%"></stop>
|
||||
</linearGradient>
|
||||
</defs>
|
||||
<g id="Icon-Architecture/16/Arch_Amazon-DynamoDB_16" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
|
||||
<g id="Icon-Architecture-BG/16/Database" fill="url(#linearGradient-1)">
|
||||
<rect id="Rectangle" x="0" y="0" width="24" height="24"></rect>
|
||||
</g>
|
||||
<path d="M14.3871979,13.0634319 L15.4218955,9.61738691 C15.468467,9.46474602 15.4391067,9.29896386 15.3439388,9.17058378 C15.2487709,9.04220369 15.0979197,8.96739955 14.9379567,8.96739955 L14.2383715,8.96739955 L15.2507958,6.94566591 L17.7798316,6.94566591 L16.9881159,9.313116 C16.9374946,9.46676775 16.9628052,9.63659338 17.0589856,9.76800607 C17.153141,9.90042962 17.3060171,9.97826636 17.4690174,9.97826636 L18.095708,9.97826636 L14.3871979,13.0634319 Z M19.9697053,9.29997473 C19.8968108,9.10083397 19.7074875,8.96739955 19.4938659,8.96739955 L18.1706274,8.96739955 L18.9623432,6.59994946 C19.0129644,6.4462977 18.9876538,6.27647207 18.8914735,6.14404852 C18.7963056,6.01263584 18.644442,5.93479909 18.4814417,5.93479909 L14.9379567,5.93479909 C14.7455961,5.93479909 14.5714591,6.04296184 14.485403,6.21379833 L12.9667666,9.24639879 C12.88881,9.40308314 12.8958969,9.58908264 12.9880275,9.73768006 C13.0811706,9.88728835 13.2441709,9.97826636 13.4193203,9.97826636 L14.2576076,9.97826636 L12.9343691,14.3816022 C12.8705863,14.595906 12.9536051,14.8253728 13.1409036,14.9486985 C13.2259472,15.0042962 13.3221275,15.0326005 13.4193203,15.0326005 C13.5347366,15.0326005 13.6491406,14.9931766 13.743296,14.9153399 L19.8178417,9.86100581 C19.980842,9.72453879 20.0425999,9.50113723 19.9697053,9.29997473 L19.9697053,9.29997473 Z M14.8346894,17.6285064 C14.8346894,18.0904726 13.2775809,18.9891332 10.4235568,18.9891332 C7.56953281,18.9891332 6.01242428,18.0904726 6.01242428,17.6285064 L6.01242428,16.562042 C7.04914673,17.1786707 8.74293255,17.495072 10.4235568,17.495072 C12.1041811,17.495072 13.797967,17.1786707 14.8346894,16.562042 L14.8346894,17.6285064 Z M14.8346894,15.1235785 C14.8346894,15.5855446 13.2775809,16.4842052 10.4235568,16.4842052 C7.56953281,16.4842052 6.01242428,15.5855446 6.01242428,15.1235785 C6.01242428,15.0275461 6.08633125,14.9133182 6.21187186,14.7950468 C7.21214704,15.316654 8.74698225,15.6239575 10.4235568,15.6239575 C10.4438053,15.6239575 11.9948393,15.5916098 11.9948393,15.5916098 L11.9948393,14.580743 C11.9745908,14.580743 10.4235568,14.6130907 10.4235568,14.6130907 C8.77128043,14.6130907 7.24656947,14.2886025 6.44574187,13.7680061 C6.17542458,13.5900935 6.0134367,13.3980288 6.01242428,13.252464 L6.01242428,12.1859995 C7.04914673,12.8026283 8.74293255,13.1200404 10.4235568,13.1200404 C10.6898244,13.1200404 11.8348763,13.0391711 12.1922621,13.0138994 L12.213523,12.5054334 L12.1203799,12.0050543 C11.7761557,12.0293151 10.6786878,12.1091736 10.4235568,12.1091736 C7.56953281,12.1091736 6.01242428,11.2095021 6.01242428,10.747536 C6.01242428,10.6474602 6.09139337,10.5281779 6.22503337,10.405863 C7.01877401,10.7566338 8.57183285,11.1508719 12.3178027,11.1963609 L12.3299518,10.1854941 C9.27951741,10.1491029 7.3437622,9.88223402 6.44574187,9.39095274 C6.17542458,9.21304018 6.0134367,9.02097549 6.01242428,8.87541066 L6.01242428,7.80995704 C7.04914673,8.4265858 8.74293255,8.74298711 10.4235568,8.74298711 C10.5015135,8.74298711 12.480803,8.70659591 12.5587596,8.70356331 L12.5152254,7.69370735 C12.4079084,7.69775082 10.5187247,7.73212029 10.4235568,7.73212029 C7.56953281,7.73212029 6.01242428,6.83345969 6.01242428,6.37149356 C6.01242428,5.90952742 7.56953281,5.01086682 10.4235568,5.01086682 C11.7447705,5.01086682 13.0001766,5.21809452 13.8668118,5.5809957 L14.25862,4.64796563 C13.2573324,4.23047763 11.8956217,4 10.4235568,4 C7.72949585,4 5.00101242,4.81374779 5,6.36947182 L5,8.88147587 C5,8.88147587 5.09213061,9.46070255 5.40092001,9.80742987 C5.08808091,10.1551681 5,10.4938084 5,10.7465251 L5,13.2625727 C5.00101242,13.510235 5.09213061,13.8438211 5.39788274,14.1875158 C5.08808091,14.5342431 5,14.8718726 5,15.1235785 L5,17.6335608 C5.00506212,19.1872631 7.7315207,20 10.4235568,20 C13.1186303,20 15.8471137,19.1862522 15.8471137,17.6305282 L15.8471137,15.1235785 L14.8346894,15.1235785 Z" id="Amazon-DynamoDB_Icon_16_Squid" fill="#FFFFFF"></path>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 4.7 KiB |
|
|
@ -0,0 +1,86 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { ICommonObject } from '../../../src'
|
||||
import { BufferMemory } from 'langchain/memory'
|
||||
import { RedisChatMessageHistory, RedisChatMessageHistoryInput } from 'langchain/stores/message/redis'
|
||||
import { createClient } from 'redis'
|
||||
|
||||
class RedisBackedChatMemory_Memory implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Redis-Backed Chat Memory'
|
||||
this.name = 'RedisBackedChatMemory'
|
||||
this.type = 'RedisBackedChatMemory'
|
||||
this.icon = 'redis.svg'
|
||||
this.category = 'Memory'
|
||||
this.description = 'Summarizes the conversation and stores the memory in Redis server'
|
||||
this.baseClasses = [this.type, ...getBaseClasses(BufferMemory)]
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Base URL',
|
||||
name: 'baseURL',
|
||||
type: 'string',
|
||||
default: 'redis://localhost:6379'
|
||||
},
|
||||
{
|
||||
label: 'Session Id',
|
||||
name: 'sessionId',
|
||||
type: 'string',
|
||||
description: 'if empty, chatId will be used automatically',
|
||||
default: '',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Session Timeouts',
|
||||
name: 'sessionTTL',
|
||||
type: 'number',
|
||||
description: 'Omit this parameter to make sessions never expire',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Memory Key',
|
||||
name: 'memoryKey',
|
||||
type: 'string',
|
||||
default: 'chat_history'
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
||||
const baseURL = nodeData.inputs?.baseURL as string
|
||||
const sessionId = nodeData.inputs?.sessionId as string
|
||||
const sessionTTL = nodeData.inputs?.sessionTTL as number
|
||||
const memoryKey = nodeData.inputs?.memoryKey as string
|
||||
|
||||
const chatId = options?.chatId as string
|
||||
|
||||
const redisClient = createClient({ url: baseURL })
|
||||
let obj: RedisChatMessageHistoryInput = {
|
||||
sessionId: sessionId ? sessionId : chatId,
|
||||
client: redisClient
|
||||
}
|
||||
|
||||
if (sessionTTL) {
|
||||
obj = {
|
||||
...obj,
|
||||
sessionTTL
|
||||
}
|
||||
}
|
||||
|
||||
let redisChatMessageHistory = new RedisChatMessageHistory(obj)
|
||||
let redis = new BufferMemory({ memoryKey, chatHistory: redisChatMessageHistory, returnMessages: true })
|
||||
|
||||
return redis
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: RedisBackedChatMemory_Memory }
|
||||
|
|
@ -0,0 +1 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 128 128" id="redis"><path fill="#A41E11" d="M121.8 93.1c-6.7 3.5-41.4 17.7-48.8 21.6-7.4 3.9-11.5 3.8-17.3 1s-42.7-17.6-49.4-20.8c-3.3-1.6-5-2.9-5-4.2v-12.7s48-10.5 55.8-13.2c7.8-2.8 10.4-2.9 17-.5s46.1 9.5 52.6 11.9v12.5c0 1.3-1.5 2.7-4.9 4.4z"></path><path fill="#D82C20" d="M121.8 80.5c-6.7 3.5-41.4 17.7-48.8 21.6-7.4 3.9-11.5 3.8-17.3 1-5.8-2.8-42.7-17.7-49.4-20.9-6.6-3.2-6.8-5.4-.3-7.9 6.5-2.6 43.2-17 51-19.7 7.8-2.8 10.4-2.9 17-.5s41.1 16.1 47.6 18.5c6.7 2.4 6.9 4.4.2 7.9z"></path><path fill="#A41E11" d="M121.8 72.5c-6.7 3.5-41.4 17.7-48.8 21.6-7.4 3.8-11.5 3.8-17.3 1-5.8-2.8-42.7-17.7-49.4-20.9-3.3-1.6-5-2.9-5-4.2v-12.7s48-10.5 55.8-13.2c7.8-2.8 10.4-2.9 17-.5s46.1 9.5 52.6 11.9v12.5c0 1.3-1.5 2.7-4.9 4.5z"></path><path fill="#D82C20" d="M121.8 59.8c-6.7 3.5-41.4 17.7-48.8 21.6-7.4 3.8-11.5 3.8-17.3 1-5.8-2.8-42.7-17.7-49.4-20.9s-6.8-5.4-.3-7.9c6.5-2.6 43.2-17 51-19.7 7.8-2.8 10.4-2.9 17-.5s41.1 16.1 47.6 18.5c6.7 2.4 6.9 4.4.2 7.9z"></path><path fill="#A41E11" d="M121.8 51c-6.7 3.5-41.4 17.7-48.8 21.6-7.4 3.8-11.5 3.8-17.3 1-5.8-2.7-42.7-17.6-49.4-20.8-3.3-1.6-5.1-2.9-5.1-4.2v-12.7s48-10.5 55.8-13.2c7.8-2.8 10.4-2.9 17-.5s46.1 9.5 52.6 11.9v12.5c.1 1.3-1.4 2.6-4.8 4.4z"></path><path fill="#D82C20" d="M121.8 38.3c-6.7 3.5-41.4 17.7-48.8 21.6-7.4 3.8-11.5 3.8-17.3 1s-42.7-17.6-49.4-20.8-6.8-5.4-.3-7.9c6.5-2.6 43.2-17 51-19.7 7.8-2.8 10.4-2.9 17-.5s41.1 16.1 47.6 18.5c6.7 2.4 6.9 4.4.2 7.8z"></path><path fill="#fff" d="M80.4 26.1l-10.8 1.2-2.5 5.8-3.9-6.5-12.5-1.1 9.3-3.4-2.8-5.2 8.8 3.4 8.2-2.7-2.2 5.4zM66.5 54.5l-20.3-8.4 29.1-4.4z"></path><ellipse cx="38.4" cy="35.4" fill="#fff" rx="15.5" ry="6"></ellipse><path fill="#7A0C00" d="M93.3 27.7l17.2 6.8-17.2 6.8z"></path><path fill="#AD2115" d="M74.3 35.3l19-7.6v13.6l-1.9.8z"></path></svg>
|
||||
|
After Width: | Height: | Size: 1.8 KiB |
|
|
@ -41,7 +41,8 @@ class ZepMemory_Memory implements INode {
|
|||
type: 'string',
|
||||
description: 'if empty, chatId will be used automatically',
|
||||
default: '',
|
||||
additionalParams: true
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Auto Summary Template',
|
||||
|
|
|
|||
|
|
@ -38,12 +38,7 @@ class ChatPromptTemplate_Prompts implements INode {
|
|||
{
|
||||
label: 'Format Prompt Values',
|
||||
name: 'promptValues',
|
||||
type: 'string',
|
||||
rows: 4,
|
||||
placeholder: `{
|
||||
"input_language": "English",
|
||||
"output_language": "French"
|
||||
}`,
|
||||
type: 'json',
|
||||
optional: true,
|
||||
acceptVariable: true,
|
||||
list: true
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
import { ICommonObject, INode, INodeData, INodeParams, PromptTemplate } from '../../../src/Interface'
|
||||
import { getBaseClasses, getInputVariables, returnJSONStr } from '../../../src/utils'
|
||||
import { getBaseClasses, getInputVariables } from '../../../src/utils'
|
||||
import { PromptTemplateInput } from 'langchain/prompts'
|
||||
|
||||
class PromptTemplate_Prompts implements INode {
|
||||
|
|
@ -31,12 +31,7 @@ class PromptTemplate_Prompts implements INode {
|
|||
{
|
||||
label: 'Format Prompt Values',
|
||||
name: 'promptValues',
|
||||
type: 'string',
|
||||
rows: 4,
|
||||
placeholder: `{
|
||||
"input_language": "English",
|
||||
"output_language": "French"
|
||||
}`,
|
||||
type: 'json',
|
||||
optional: true,
|
||||
acceptVariable: true,
|
||||
list: true
|
||||
|
|
@ -46,12 +41,11 @@ class PromptTemplate_Prompts implements INode {
|
|||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const template = nodeData.inputs?.template as string
|
||||
let promptValuesStr = nodeData.inputs?.promptValues as string
|
||||
const promptValuesStr = nodeData.inputs?.promptValues as string
|
||||
|
||||
let promptValues: ICommonObject = {}
|
||||
if (promptValuesStr) {
|
||||
promptValuesStr = promptValuesStr.replace(/\s/g, '')
|
||||
promptValues = JSON.parse(returnJSONStr(promptValuesStr))
|
||||
promptValues = JSON.parse(promptValuesStr.replace(/\s/g, ''))
|
||||
}
|
||||
|
||||
const inputVariables = getInputVariables(template)
|
||||
|
|
|
|||
|
|
@ -1,4 +1,8 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" class="icon icon-tabler icon-tabler-tool" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-linejoin="round">
|
||||
<svg xmlns="http://www.w3.org/2000/svg" class="icon icon-tabler icon-tabler-subtask" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-linejoin="round">
|
||||
<path stroke="none" d="M0 0h24v24H0z" fill="none"></path>
|
||||
<path d="M7 10h3v-3l-3.5 -3.5a6 6 0 0 1 8 8l6 6a2 2 0 0 1 -3 3l-6 -6a6 6 0 0 1 -8 -8l3.5 3.5"></path>
|
||||
<path d="M6 9l6 0"></path>
|
||||
<path d="M4 5l4 0"></path>
|
||||
<path d="M6 5v11a1 1 0 0 0 1 1h5"></path>
|
||||
<path d="M12 7m0 1a1 1 0 0 1 1 -1h6a1 1 0 0 1 1 1v2a1 1 0 0 1 -1 1h-6a1 1 0 0 1 -1 -1z"></path>
|
||||
<path d="M12 15m0 1a1 1 0 0 1 1 -1h6a1 1 0 0 1 1 1v2a1 1 0 0 1 -1 1h-6a1 1 0 0 1 -1 -1z"></path>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 396 B After Width: | Height: | Size: 598 B |
|
|
@ -0,0 +1,108 @@
|
|||
import { ICommonObject, IDatabaseEntity, INode, INodeData, INodeOptionsValue, INodeParams } from '../../../src/Interface'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { DynamicStructuredTool } from './core'
|
||||
import { z } from 'zod'
|
||||
import { DataSource } from 'typeorm'
|
||||
|
||||
class CustomTool_Tools implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Custom Tool'
|
||||
this.name = 'customTool'
|
||||
this.type = 'CustomTool'
|
||||
this.icon = 'customtool.svg'
|
||||
this.category = 'Tools'
|
||||
this.description = `Use custom tool you've created in Flowise within chatflow`
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Select Tool',
|
||||
name: 'selectedTool',
|
||||
type: 'asyncOptions',
|
||||
loadMethod: 'listTools'
|
||||
}
|
||||
]
|
||||
this.baseClasses = [this.type, 'Tool', ...getBaseClasses(DynamicStructuredTool)]
|
||||
}
|
||||
|
||||
//@ts-ignore
|
||||
loadMethods = {
|
||||
async listTools(nodeData: INodeData, options: ICommonObject): Promise<INodeOptionsValue[]> {
|
||||
const returnData: INodeOptionsValue[] = []
|
||||
|
||||
const appDataSource = options.appDataSource as DataSource
|
||||
const databaseEntities = options.databaseEntities as IDatabaseEntity
|
||||
|
||||
if (appDataSource === undefined || !appDataSource) {
|
||||
return returnData
|
||||
}
|
||||
|
||||
const tools = await appDataSource.getRepository(databaseEntities['Tool']).find()
|
||||
|
||||
for (let i = 0; i < tools.length; i += 1) {
|
||||
const data = {
|
||||
label: tools[i].name,
|
||||
name: tools[i].id,
|
||||
description: tools[i].description
|
||||
} as INodeOptionsValue
|
||||
returnData.push(data)
|
||||
}
|
||||
return returnData
|
||||
}
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData, input: string, options: ICommonObject): Promise<any> {
|
||||
const selectedToolId = nodeData.inputs?.selectedTool as string
|
||||
|
||||
const appDataSource = options.appDataSource as DataSource
|
||||
const databaseEntities = options.databaseEntities as IDatabaseEntity
|
||||
|
||||
try {
|
||||
const tool = await appDataSource.getRepository(databaseEntities['Tool']).findOneBy({
|
||||
id: selectedToolId
|
||||
})
|
||||
|
||||
if (!tool) throw new Error(`Tool ${selectedToolId} not found`)
|
||||
const obj = {
|
||||
name: tool.name,
|
||||
description: tool.description,
|
||||
schema: z.object(convertSchemaToZod(tool.schema)),
|
||||
code: tool.func
|
||||
}
|
||||
return new DynamicStructuredTool(obj)
|
||||
} catch (e) {
|
||||
throw new Error(e)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const convertSchemaToZod = (schema: string) => {
|
||||
try {
|
||||
const parsedSchema = JSON.parse(schema)
|
||||
const zodObj: any = {}
|
||||
for (const sch of parsedSchema) {
|
||||
if (sch.type === 'string') {
|
||||
if (sch.required) z.string({ required_error: `${sch.property} required` }).describe(sch.description)
|
||||
zodObj[sch.property] = z.string().describe(sch.description)
|
||||
} else if (sch.type === 'number') {
|
||||
if (sch.required) z.number({ required_error: `${sch.property} required` }).describe(sch.description)
|
||||
zodObj[sch.property] = z.number().describe(sch.description)
|
||||
} else if (sch.type === 'boolean') {
|
||||
if (sch.required) z.boolean({ required_error: `${sch.property} required` }).describe(sch.description)
|
||||
zodObj[sch.property] = z.boolean().describe(sch.description)
|
||||
}
|
||||
}
|
||||
return zodObj
|
||||
} catch (e) {
|
||||
throw new Error(e)
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: CustomTool_Tools }
|
||||
|
|
@ -0,0 +1,78 @@
|
|||
import { z } from 'zod'
|
||||
import { CallbackManagerForToolRun } from 'langchain/callbacks'
|
||||
import { StructuredTool, ToolParams } from 'langchain/tools'
|
||||
import { NodeVM } from 'vm2'
|
||||
import { availableDependencies } from '../../../src/utils'
|
||||
|
||||
export interface BaseDynamicToolInput extends ToolParams {
|
||||
name: string
|
||||
description: string
|
||||
code: string
|
||||
returnDirect?: boolean
|
||||
}
|
||||
|
||||
export interface DynamicStructuredToolInput<
|
||||
// eslint-disable-next-line
|
||||
T extends z.ZodObject<any, any, any, any> = z.ZodObject<any, any, any, any>
|
||||
> extends BaseDynamicToolInput {
|
||||
func?: (input: z.infer<T>, runManager?: CallbackManagerForToolRun) => Promise<string>
|
||||
schema: T
|
||||
}
|
||||
|
||||
export class DynamicStructuredTool<
|
||||
// eslint-disable-next-line
|
||||
T extends z.ZodObject<any, any, any, any> = z.ZodObject<any, any, any, any>
|
||||
> extends StructuredTool {
|
||||
name: string
|
||||
|
||||
description: string
|
||||
|
||||
code: string
|
||||
|
||||
func: DynamicStructuredToolInput['func']
|
||||
|
||||
schema: T
|
||||
|
||||
constructor(fields: DynamicStructuredToolInput<T>) {
|
||||
super(fields)
|
||||
this.name = fields.name
|
||||
this.description = fields.description
|
||||
this.code = fields.code
|
||||
this.func = fields.func
|
||||
this.returnDirect = fields.returnDirect ?? this.returnDirect
|
||||
this.schema = fields.schema
|
||||
}
|
||||
|
||||
protected async _call(arg: z.output<T>): Promise<string> {
|
||||
let sandbox: any = {}
|
||||
if (typeof arg === 'object' && Object.keys(arg).length) {
|
||||
for (const item in arg) {
|
||||
sandbox[`$${item}`] = arg[item]
|
||||
}
|
||||
}
|
||||
|
||||
const options = {
|
||||
console: 'inherit',
|
||||
sandbox,
|
||||
require: {
|
||||
external: false as boolean | { modules: string[] },
|
||||
builtin: ['*']
|
||||
}
|
||||
} as any
|
||||
|
||||
const external = JSON.stringify(availableDependencies)
|
||||
if (external) {
|
||||
const deps = JSON.parse(external)
|
||||
if (deps && deps.length) {
|
||||
options.require.external = {
|
||||
modules: deps
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const vm = new NodeVM(options)
|
||||
const response = await vm.run(`module.exports = async function() {${this.code}}()`, __dirname)
|
||||
|
||||
return response
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" class="icon icon-tabler icon-tabler-tool" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-linejoin="round">
|
||||
<path stroke="none" d="M0 0h24v24H0z" fill="none"></path>
|
||||
<path d="M7 10h3v-3l-3.5 -3.5a6 6 0 0 1 8 8l6 6a2 2 0 0 1 -3 3l-6 -6a6 6 0 0 1 -8 -8l3.5 3.5"></path>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 396 B |
|
|
@ -0,0 +1,120 @@
|
|||
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { QdrantClient } from '@qdrant/js-client-rest'
|
||||
import { QdrantVectorStore, QdrantLibArgs } from 'langchain/vectorstores/qdrant'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
|
||||
class Qdrant_Existing_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Qdrant Load Existing Index'
|
||||
this.name = 'qdrantExistingIndex'
|
||||
this.type = 'Qdrant'
|
||||
this.icon = 'qdrant_logo.svg'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Load existing index from Qdrant (i.e., documents have been upserted)'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Embeddings',
|
||||
name: 'embeddings',
|
||||
type: 'Embeddings'
|
||||
},
|
||||
{
|
||||
label: 'Qdrant Server URL',
|
||||
name: 'qdrantServerUrl',
|
||||
type: 'string',
|
||||
placeholder: 'http://localhost:6333'
|
||||
},
|
||||
{
|
||||
label: 'Qdrant Collection Name',
|
||||
name: 'qdrantCollection',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Qdrant API Key',
|
||||
name: 'qdrantApiKey',
|
||||
type: 'password',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Qdrant Collection Cofiguration',
|
||||
name: 'qdrantCollectionCofiguration',
|
||||
type: 'json',
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Default to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'Qdrant Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'Qdrant Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(QdrantVectorStore)]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const qdrantServerUrl = nodeData.inputs?.qdrantServerUrl as string
|
||||
const collectionName = nodeData.inputs?.qdrantCollection as string
|
||||
const qdrantApiKey = nodeData.inputs?.qdrantApiKey as string
|
||||
let qdrantCollectionCofiguration = nodeData.inputs?.qdrantCollectionCofiguration
|
||||
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
||||
const output = nodeData.outputs?.output as string
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseInt(topK, 10) : 4
|
||||
|
||||
// connect to Qdrant Cloud
|
||||
const client = new QdrantClient({
|
||||
url: qdrantServerUrl,
|
||||
apiKey: qdrantApiKey
|
||||
})
|
||||
|
||||
const dbConfig: QdrantLibArgs = {
|
||||
client,
|
||||
collectionName
|
||||
}
|
||||
|
||||
if (qdrantCollectionCofiguration) {
|
||||
qdrantCollectionCofiguration =
|
||||
typeof qdrantCollectionCofiguration === 'object' ? qdrantCollectionCofiguration : JSON.parse(qdrantCollectionCofiguration)
|
||||
dbConfig.collectionConfig = qdrantCollectionCofiguration
|
||||
}
|
||||
|
||||
const vectorStore = await QdrantVectorStore.fromExistingCollection(embeddings, dbConfig)
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k)
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: Qdrant_Existing_VectorStores }
|
||||
|
|
@ -0,0 +1,27 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg width="451.84" height="152.4" fill="none" version="1.1" viewBox="0 0 451.84 152.4" xmlns="http://www.w3.org/2000/svg">
|
||||
<g fill="#dc244c">
|
||||
<path d="m212.69 116c0 5.523-4.477 10.001-10 10.001h-6.836v-7.808h-0.244c-0.732 1.057-1.708 2.155-2.928 3.293-1.139 1.058-2.521 2.034-4.148 2.929-1.545 0.894-3.294 1.626-5.246 2.196-1.871 0.569-3.823 0.853-5.856 0.853-4.392 0-8.377-0.732-11.956-2.196-3.579-1.545-6.669-3.66-9.272-6.344-2.521-2.765-4.473-6.018-5.856-9.759-1.383-3.742-2.074-7.849-2.074-12.322 0-4.148 0.61-8.093 1.83-11.835 1.301-3.822 3.091-7.198 5.368-10.126 2.359-2.9275 5.205-5.2455 8.54-6.9535 3.335-1.7893 7.117-2.684 11.346-2.684 3.823 0 7.361 0.61 10.614 1.83 3.335 1.1387 6.059 3.1313 8.174 5.9785h0.244v-29.284c0-5.5229 4.477-10 10-10h8.3zm-16.836-19.646c0-4.473-1.301-8.092-3.904-10.858-2.521-2.765-6.1-4.148-10.736-4.148s-8.255 1.383-10.858 4.148c-2.521 2.766-3.782 6.385-3.782 10.858 0 4.474 1.261 8.093 3.782 10.858 2.603 2.766 6.222 4.149 10.858 4.149s8.215-1.383 10.736-4.149c2.603-2.765 3.904-6.384 3.904-10.858z"/>
|
||||
<path d="m224.53 76.708c0-5.5223 4.477-9.9995 10-9.9995h8.3v9.5155h0.244c1.952-3.6595 4.27-6.3842 6.954-8.1735 2.684-1.8707 6.059-2.806 10.126-2.806 1.057 0 2.114 0.0407 3.172 0.122 1.057 0.0813 2.033 0.244 2.928 0.488v16.714c-1.302-0.407-2.603-0.692-3.904-0.855-1.22-0.244-2.522-0.366-3.904-0.366-3.498 0-6.263 0.488-8.296 1.464-2.034 0.976-3.62 2.359-4.758 4.148-1.058 1.708-1.749 3.782-2.074 6.222-0.326 2.441-0.488 5.124-0.488 8.052v14.766c0 5.523-4.477 10.001-10 10.001h-8.3z"/>
|
||||
<path d="m310.64 118.56h-0.244c-2.033 3.172-4.758 5.449-8.174 6.832-3.334 1.382-6.872 2.073-10.614 2.073-2.765 0-5.449-0.406-8.052-1.219-2.521-0.732-4.758-1.871-6.71-3.416-1.952-1.546-3.497-3.457-4.636-5.735-1.138-2.277-1.708-4.92-1.708-7.929 0-3.416 0.61-6.304 1.83-8.662 1.302-2.359 3.01-4.311 5.124-5.856 2.196-1.546 4.677-2.725 7.442-3.538 2.766-0.895 5.612-1.546 8.54-1.953 3.01-0.406 5.978-0.65 8.906-0.732 3.01-0.081 5.775-0.121 8.296-0.121 0-3.254-1.179-5.816-3.538-7.687-2.277-1.952-5.002-2.928-8.174-2.928-3.009 0-5.774 0.651-8.296 1.952-2.44 1.221-4.636 2.929-6.588 5.124l-9.76-10.004c3.416-3.1715 7.402-5.5302 11.956-7.0755 4.555-1.6267 9.272-2.44 14.152-2.44 5.368 0 9.76 0.6913 13.176 2.074 3.498 1.3013 6.263 3.2533 8.296 5.8555 2.115 2.603 3.579 5.816 4.392 9.638 0.814 3.742 1.22 8.093 1.22 13.054v20.135c0 5.522-4.477 10-10 10h-6.836zm-4.514-18.545c-1.382 0-3.131 0.082-5.246 0.244-2.033 0.082-4.026 0.407-5.978 0.976-1.87 0.57-3.497 1.424-4.88 2.562-1.301 1.139-1.952 2.725-1.952 4.759 0 2.196 0.936 3.822 2.806 4.879 1.871 1.058 3.823 1.586 5.856 1.586 1.79 0 3.498-0.244 5.124-0.732 1.708-0.488 3.213-1.179 4.514-2.074 1.302-0.894 2.318-2.033 3.05-3.416 0.814-1.382 1.22-3.009 1.22-4.879v-3.905z"/>
|
||||
<path d="m340.18 76.708c0-5.5223 4.477-9.9995 10-9.9995h7.568v8.0515h0.244c0.569-1.138 1.382-2.2768 2.44-3.4155 1.057-1.1387 2.318-2.1553 3.782-3.05s3.131-1.6267 5.002-2.196c1.87-0.5693 3.904-0.854 6.1-0.854 4.636 0 8.377 0.732 11.224 2.196 2.846 1.3827 5.042 3.3347 6.588 5.8555 1.626 2.522 2.724 5.49 3.294 8.906 0.569 3.416 0.854 7.117 0.854 11.103v22.695c0 5.523-4.477 10.001-10 10.001h-8.3v-29.037c0-1.708-0.082-3.456-0.244-5.246-0.082-1.87-0.448-3.578-1.098-5.123-0.57-1.546-1.505-2.807-2.806-3.783-1.22-0.976-3.01-1.464-5.368-1.464-2.359 0-4.27 0.448-5.734 1.342-1.464 0.814-2.603 1.952-3.416 3.416-0.732 1.383-1.22 2.969-1.464 4.758-0.244 1.79-0.366 3.66-0.366 5.612v19.524c0 5.523-4.477 10.001-10 10.001h-8.3z"/>
|
||||
<path d="m451.84 71.348c0 5.5225-4.477 9.9995-10 9.9995h-6.104v19.765c0 1.626 0.082 3.131 0.244 4.513 0.163 1.302 0.529 2.44 1.098 3.416 0.57 0.976 1.424 1.749 2.562 2.319 1.22 0.488 2.806 0.731 4.758 0.731 0.976 0 2.237-0.081 3.782-0.244 1.627-0.244 2.847-0.731 3.66-1.463v8.724c0 3.915-2.452 7.557-6.344 7.989-2.196 0.244-4.351 0.366-6.466 0.366-3.09 0-5.937-0.325-8.54-0.976-2.602-0.65-4.88-1.667-6.832-3.049-1.952-1.464-3.497-3.335-4.636-5.613-1.057-2.277-1.586-5.042-1.586-8.295v-28.183h-11.712v-4.64c0-5.5224 4.478-9.9995 10-9.9995h1.712v-7.568c0-5.5229 4.478-10 10-10h8.3v17.568h16.104z"/>
|
||||
</g>
|
||||
<g clip-rule="evenodd" fill-rule="evenodd">
|
||||
<path d="m103.79 140.09-3.0389-83.784-5.5036-22.089 36.735 3.8889v101.35l-22.44 12.951z" fill="#24386c"/>
|
||||
<path d="m131.98 38.1-22.44 12.96-46.308-10.158-54.203 22.069-9.0306-24.871 32.99-19.05 33-19.05 32.991 19.05z" fill="#7589be"/>
|
||||
<path d="m0 38.1 22.44 12.96 13.008 38.686 43.921 35.142-13.378 27.512-33-19.051-32.991-19.05v-76.2" fill="#b2bfe8"/>
|
||||
<path d="m80.868 104.56-14.877 21.932v25.91l21.11-12.18 10.877-16.242" fill="#24386c"/>
|
||||
<path d="m66 100.59-21.119-36.565 4.5489-12.119 17.293-8.3844 20.378 20.504z" fill="#7589be"/>
|
||||
<path d="m44.881 64.022 21.11 12.18v24.38l-19.524 0.84001-11.81-15.08 10.224-22.32" fill="#b2bfe8"/>
|
||||
<path d="m65.991 76.2 21.11-12.179 14.367 23.922-17.386 14.365-18.091-1.7272z" fill="#24386c"/>
|
||||
<path d="m87.101 140.22 22.44 12.181v-101.34l-21.78-12.57-21.77-12.57-21.78 12.57-21.77 12.57v50.289l21.77 12.57 21.78 12.571 21.11-12.191zm0-51.83-21.11 12.19-21.11-12.19v-24.37l21.11-12.19 21.11 12.19v24.37" fill="#dc244c"/>
|
||||
</g>
|
||||
<path d="m66 126.5v-25.914l-21-12.086v25.871z" fill="url(#paint0_linear_425_56)"/>
|
||||
<defs>
|
||||
<linearGradient id="paint0_linear_425_56" x1="62.128" x2="41.202" y1="105.54" y2="105.54" gradientUnits="userSpaceOnUse">
|
||||
<stop stop-color="#FF3364" offset="0"/>
|
||||
<stop stop-color="#C91540" stop-opacity="0" offset="1"/>
|
||||
</linearGradient>
|
||||
</defs>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 5.4 KiB |
|
|
@ -0,0 +1,121 @@
|
|||
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { QdrantClient } from '@qdrant/js-client-rest'
|
||||
import { QdrantVectorStore, QdrantLibArgs } from 'langchain/vectorstores/qdrant'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { Document } from 'langchain/document'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { flatten } from 'lodash'
|
||||
|
||||
class QdrantUpsert_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Qdrant Upsert Document'
|
||||
this.name = 'qdrantUpsert'
|
||||
this.type = 'Qdrant'
|
||||
this.icon = 'qdrant_logo.svg'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Upsert documents to Qdrant'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Document',
|
||||
name: 'document',
|
||||
type: 'Document',
|
||||
list: true
|
||||
},
|
||||
{
|
||||
label: 'Embeddings',
|
||||
name: 'embeddings',
|
||||
type: 'Embeddings'
|
||||
},
|
||||
{
|
||||
label: 'Qdrant Server URL',
|
||||
name: 'qdrantServerUrl',
|
||||
type: 'string',
|
||||
placeholder: 'http://localhost:6333'
|
||||
},
|
||||
{
|
||||
label: 'Qdrant Collection Name',
|
||||
name: 'qdrantCollection',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Qdrant API Key',
|
||||
name: 'qdrantApiKey',
|
||||
type: 'password',
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Default to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'Qdrant Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'Qdrant Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(QdrantVectorStore)]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData): Promise<any> {
|
||||
const qdrantServerUrl = nodeData.inputs?.qdrantServerUrl as string
|
||||
const collectionName = nodeData.inputs?.qdrantCollection as string
|
||||
const qdrantApiKey = nodeData.inputs?.qdrantApiKey as string
|
||||
const docs = nodeData.inputs?.document as Document[]
|
||||
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
||||
const output = nodeData.outputs?.output as string
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseInt(topK, 10) : 4
|
||||
|
||||
// connect to Qdrant Cloud
|
||||
const client = new QdrantClient({
|
||||
url: qdrantServerUrl,
|
||||
apiKey: qdrantApiKey
|
||||
})
|
||||
|
||||
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
||||
const finalDocs = []
|
||||
for (let i = 0; i < flattenDocs.length; i += 1) {
|
||||
finalDocs.push(new Document(flattenDocs[i]))
|
||||
}
|
||||
|
||||
const dbConfig: QdrantLibArgs = {
|
||||
client,
|
||||
url: qdrantServerUrl,
|
||||
collectionName
|
||||
}
|
||||
const vectorStore = await QdrantVectorStore.fromDocuments(finalDocs, embeddings, dbConfig)
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k)
|
||||
return retriever
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: QdrantUpsert_VectorStores }
|
||||
|
|
@ -0,0 +1,27 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg width="451.84" height="152.4" fill="none" version="1.1" viewBox="0 0 451.84 152.4" xmlns="http://www.w3.org/2000/svg">
|
||||
<g fill="#dc244c">
|
||||
<path d="m212.69 116c0 5.523-4.477 10.001-10 10.001h-6.836v-7.808h-0.244c-0.732 1.057-1.708 2.155-2.928 3.293-1.139 1.058-2.521 2.034-4.148 2.929-1.545 0.894-3.294 1.626-5.246 2.196-1.871 0.569-3.823 0.853-5.856 0.853-4.392 0-8.377-0.732-11.956-2.196-3.579-1.545-6.669-3.66-9.272-6.344-2.521-2.765-4.473-6.018-5.856-9.759-1.383-3.742-2.074-7.849-2.074-12.322 0-4.148 0.61-8.093 1.83-11.835 1.301-3.822 3.091-7.198 5.368-10.126 2.359-2.9275 5.205-5.2455 8.54-6.9535 3.335-1.7893 7.117-2.684 11.346-2.684 3.823 0 7.361 0.61 10.614 1.83 3.335 1.1387 6.059 3.1313 8.174 5.9785h0.244v-29.284c0-5.5229 4.477-10 10-10h8.3zm-16.836-19.646c0-4.473-1.301-8.092-3.904-10.858-2.521-2.765-6.1-4.148-10.736-4.148s-8.255 1.383-10.858 4.148c-2.521 2.766-3.782 6.385-3.782 10.858 0 4.474 1.261 8.093 3.782 10.858 2.603 2.766 6.222 4.149 10.858 4.149s8.215-1.383 10.736-4.149c2.603-2.765 3.904-6.384 3.904-10.858z"/>
|
||||
<path d="m224.53 76.708c0-5.5223 4.477-9.9995 10-9.9995h8.3v9.5155h0.244c1.952-3.6595 4.27-6.3842 6.954-8.1735 2.684-1.8707 6.059-2.806 10.126-2.806 1.057 0 2.114 0.0407 3.172 0.122 1.057 0.0813 2.033 0.244 2.928 0.488v16.714c-1.302-0.407-2.603-0.692-3.904-0.855-1.22-0.244-2.522-0.366-3.904-0.366-3.498 0-6.263 0.488-8.296 1.464-2.034 0.976-3.62 2.359-4.758 4.148-1.058 1.708-1.749 3.782-2.074 6.222-0.326 2.441-0.488 5.124-0.488 8.052v14.766c0 5.523-4.477 10.001-10 10.001h-8.3z"/>
|
||||
<path d="m310.64 118.56h-0.244c-2.033 3.172-4.758 5.449-8.174 6.832-3.334 1.382-6.872 2.073-10.614 2.073-2.765 0-5.449-0.406-8.052-1.219-2.521-0.732-4.758-1.871-6.71-3.416-1.952-1.546-3.497-3.457-4.636-5.735-1.138-2.277-1.708-4.92-1.708-7.929 0-3.416 0.61-6.304 1.83-8.662 1.302-2.359 3.01-4.311 5.124-5.856 2.196-1.546 4.677-2.725 7.442-3.538 2.766-0.895 5.612-1.546 8.54-1.953 3.01-0.406 5.978-0.65 8.906-0.732 3.01-0.081 5.775-0.121 8.296-0.121 0-3.254-1.179-5.816-3.538-7.687-2.277-1.952-5.002-2.928-8.174-2.928-3.009 0-5.774 0.651-8.296 1.952-2.44 1.221-4.636 2.929-6.588 5.124l-9.76-10.004c3.416-3.1715 7.402-5.5302 11.956-7.0755 4.555-1.6267 9.272-2.44 14.152-2.44 5.368 0 9.76 0.6913 13.176 2.074 3.498 1.3013 6.263 3.2533 8.296 5.8555 2.115 2.603 3.579 5.816 4.392 9.638 0.814 3.742 1.22 8.093 1.22 13.054v20.135c0 5.522-4.477 10-10 10h-6.836zm-4.514-18.545c-1.382 0-3.131 0.082-5.246 0.244-2.033 0.082-4.026 0.407-5.978 0.976-1.87 0.57-3.497 1.424-4.88 2.562-1.301 1.139-1.952 2.725-1.952 4.759 0 2.196 0.936 3.822 2.806 4.879 1.871 1.058 3.823 1.586 5.856 1.586 1.79 0 3.498-0.244 5.124-0.732 1.708-0.488 3.213-1.179 4.514-2.074 1.302-0.894 2.318-2.033 3.05-3.416 0.814-1.382 1.22-3.009 1.22-4.879v-3.905z"/>
|
||||
<path d="m340.18 76.708c0-5.5223 4.477-9.9995 10-9.9995h7.568v8.0515h0.244c0.569-1.138 1.382-2.2768 2.44-3.4155 1.057-1.1387 2.318-2.1553 3.782-3.05s3.131-1.6267 5.002-2.196c1.87-0.5693 3.904-0.854 6.1-0.854 4.636 0 8.377 0.732 11.224 2.196 2.846 1.3827 5.042 3.3347 6.588 5.8555 1.626 2.522 2.724 5.49 3.294 8.906 0.569 3.416 0.854 7.117 0.854 11.103v22.695c0 5.523-4.477 10.001-10 10.001h-8.3v-29.037c0-1.708-0.082-3.456-0.244-5.246-0.082-1.87-0.448-3.578-1.098-5.123-0.57-1.546-1.505-2.807-2.806-3.783-1.22-0.976-3.01-1.464-5.368-1.464-2.359 0-4.27 0.448-5.734 1.342-1.464 0.814-2.603 1.952-3.416 3.416-0.732 1.383-1.22 2.969-1.464 4.758-0.244 1.79-0.366 3.66-0.366 5.612v19.524c0 5.523-4.477 10.001-10 10.001h-8.3z"/>
|
||||
<path d="m451.84 71.348c0 5.5225-4.477 9.9995-10 9.9995h-6.104v19.765c0 1.626 0.082 3.131 0.244 4.513 0.163 1.302 0.529 2.44 1.098 3.416 0.57 0.976 1.424 1.749 2.562 2.319 1.22 0.488 2.806 0.731 4.758 0.731 0.976 0 2.237-0.081 3.782-0.244 1.627-0.244 2.847-0.731 3.66-1.463v8.724c0 3.915-2.452 7.557-6.344 7.989-2.196 0.244-4.351 0.366-6.466 0.366-3.09 0-5.937-0.325-8.54-0.976-2.602-0.65-4.88-1.667-6.832-3.049-1.952-1.464-3.497-3.335-4.636-5.613-1.057-2.277-1.586-5.042-1.586-8.295v-28.183h-11.712v-4.64c0-5.5224 4.478-9.9995 10-9.9995h1.712v-7.568c0-5.5229 4.478-10 10-10h8.3v17.568h16.104z"/>
|
||||
</g>
|
||||
<g clip-rule="evenodd" fill-rule="evenodd">
|
||||
<path d="m103.79 140.09-3.0389-83.784-5.5036-22.089 36.735 3.8889v101.35l-22.44 12.951z" fill="#24386c"/>
|
||||
<path d="m131.98 38.1-22.44 12.96-46.308-10.158-54.203 22.069-9.0306-24.871 32.99-19.05 33-19.05 32.991 19.05z" fill="#7589be"/>
|
||||
<path d="m0 38.1 22.44 12.96 13.008 38.686 43.921 35.142-13.378 27.512-33-19.051-32.991-19.05v-76.2" fill="#b2bfe8"/>
|
||||
<path d="m80.868 104.56-14.877 21.932v25.91l21.11-12.18 10.877-16.242" fill="#24386c"/>
|
||||
<path d="m66 100.59-21.119-36.565 4.5489-12.119 17.293-8.3844 20.378 20.504z" fill="#7589be"/>
|
||||
<path d="m44.881 64.022 21.11 12.18v24.38l-19.524 0.84001-11.81-15.08 10.224-22.32" fill="#b2bfe8"/>
|
||||
<path d="m65.991 76.2 21.11-12.179 14.367 23.922-17.386 14.365-18.091-1.7272z" fill="#24386c"/>
|
||||
<path d="m87.101 140.22 22.44 12.181v-101.34l-21.78-12.57-21.77-12.57-21.78 12.57-21.77 12.57v50.289l21.77 12.57 21.78 12.571 21.11-12.191zm0-51.83-21.11 12.19-21.11-12.19v-24.37l21.11-12.19 21.11 12.19v24.37" fill="#dc244c"/>
|
||||
</g>
|
||||
<path d="m66 126.5v-25.914l-21-12.086v25.871z" fill="url(#paint0_linear_425_56)"/>
|
||||
<defs>
|
||||
<linearGradient id="paint0_linear_425_56" x1="62.128" x2="41.202" y1="105.54" y2="105.54" gradientUnits="userSpaceOnUse">
|
||||
<stop stop-color="#FF3364" offset="0"/>
|
||||
<stop stop-color="#C91540" stop-opacity="0" offset="1"/>
|
||||
</linearGradient>
|
||||
</defs>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 5.4 KiB |
|
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"name": "flowise-components",
|
||||
"version": "1.2.13",
|
||||
"version": "1.2.15",
|
||||
"description": "Flowiseai Components",
|
||||
"main": "dist/src/index",
|
||||
"types": "dist/src/index.d.ts",
|
||||
|
|
@ -16,10 +16,12 @@
|
|||
},
|
||||
"license": "SEE LICENSE IN LICENSE.md",
|
||||
"dependencies": {
|
||||
"@aws-sdk/client-dynamodb": "^3.360.0",
|
||||
"@dqbd/tiktoken": "^1.0.7",
|
||||
"@getzep/zep-js": "^0.3.1",
|
||||
"@huggingface/inference": "1",
|
||||
"@pinecone-database/pinecone": "^0.0.12",
|
||||
"@qdrant/js-client-rest": "^1.2.2",
|
||||
"@supabase/supabase-js": "^2.21.0",
|
||||
"@types/js-yaml": "^4.0.5",
|
||||
"axios": "^0.27.2",
|
||||
|
|
@ -29,11 +31,11 @@
|
|||
"d3-dsv": "2",
|
||||
"dotenv": "^16.0.0",
|
||||
"express": "^4.17.3",
|
||||
"faiss-node": "^0.2.1",
|
||||
"faiss-node": "^0.2.2",
|
||||
"form-data": "^4.0.0",
|
||||
"graphql": "^16.6.0",
|
||||
"html-to-text": "^9.0.5",
|
||||
"langchain": "^0.0.94",
|
||||
"langchain": "^0.0.96",
|
||||
"linkifyjs": "^4.1.1",
|
||||
"mammoth": "^1.5.1",
|
||||
"moment": "^2.29.3",
|
||||
|
|
@ -42,7 +44,9 @@
|
|||
"pdfjs-dist": "^3.7.107",
|
||||
"playwright": "^1.35.0",
|
||||
"puppeteer": "^20.7.1",
|
||||
"redis": "^4.6.7",
|
||||
"srt-parser-2": "^1.2.3",
|
||||
"vm2": "^3.9.19",
|
||||
"weaviate-ts-client": "^1.1.0",
|
||||
"ws": "^8.9.0"
|
||||
},
|
||||
|
|
|
|||
|
|
@ -2,7 +2,18 @@
|
|||
* Types
|
||||
*/
|
||||
|
||||
export type NodeParamsType = 'options' | 'string' | 'number' | 'boolean' | 'password' | 'json' | 'code' | 'date' | 'file' | 'folder'
|
||||
export type NodeParamsType =
|
||||
| 'asyncOptions'
|
||||
| 'options'
|
||||
| 'string'
|
||||
| 'number'
|
||||
| 'boolean'
|
||||
| 'password'
|
||||
| 'json'
|
||||
| 'code'
|
||||
| 'date'
|
||||
| 'file'
|
||||
| 'folder'
|
||||
|
||||
export type CommonType = string | number | boolean | undefined | null
|
||||
|
||||
|
|
@ -16,6 +27,10 @@ export interface ICommonObject {
|
|||
[key: string]: any | CommonType | ICommonObject | CommonType[] | ICommonObject[]
|
||||
}
|
||||
|
||||
export type IDatabaseEntity = {
|
||||
[key: string]: any
|
||||
}
|
||||
|
||||
export interface IAttachment {
|
||||
content: string
|
||||
contentType: string
|
||||
|
|
@ -50,6 +65,7 @@ export interface INodeParams {
|
|||
placeholder?: string
|
||||
fileType?: string
|
||||
additionalParams?: boolean
|
||||
loadMethod?: string
|
||||
}
|
||||
|
||||
export interface INodeExecutionData {
|
||||
|
|
@ -74,6 +90,9 @@ export interface INodeProperties {
|
|||
export interface INode extends INodeProperties {
|
||||
inputs?: INodeParams[]
|
||||
output?: INodeOutputsValue[]
|
||||
loadMethods?: {
|
||||
[key: string]: (nodeData: INodeData, options?: ICommonObject) => Promise<INodeOptionsValue[]>
|
||||
}
|
||||
init?(nodeData: INodeData, input: string, options?: ICommonObject): Promise<any>
|
||||
run?(nodeData: INodeData, input: string, options?: ICommonObject): Promise<string | ICommonObject>
|
||||
}
|
||||
|
|
@ -83,6 +102,7 @@ export interface INodeData extends INodeProperties {
|
|||
inputs?: ICommonObject
|
||||
outputs?: ICommonObject
|
||||
instance?: any
|
||||
loadMethod?: string // method to load async options
|
||||
}
|
||||
|
||||
export interface IMessage {
|
||||
|
|
|
|||
|
|
@ -18,6 +18,7 @@ export const notEmptyRegex = '(.|\\s)*\\S(.|\\s)*' //return true if string is no
|
|||
*/
|
||||
export const getBaseClasses = (targetClass: any) => {
|
||||
const baseClasses: string[] = []
|
||||
const skipClassNames = ['BaseLangChain', 'Serializable']
|
||||
|
||||
if (targetClass instanceof Function) {
|
||||
let baseClass = targetClass
|
||||
|
|
@ -26,7 +27,7 @@ export const getBaseClasses = (targetClass: any) => {
|
|||
const newBaseClass = Object.getPrototypeOf(baseClass)
|
||||
if (newBaseClass && newBaseClass !== Object && newBaseClass.name) {
|
||||
baseClass = newBaseClass
|
||||
baseClasses.push(baseClass.name)
|
||||
if (!skipClassNames.includes(baseClass.name)) baseClasses.push(baseClass.name)
|
||||
} else {
|
||||
break
|
||||
}
|
||||
|
|
@ -244,43 +245,30 @@ export class CustomChainHandler extends BaseCallbackHandler {
|
|||
}
|
||||
}
|
||||
|
||||
export const returnJSONStr = (jsonStr: string): string => {
|
||||
let jsonStrArray = jsonStr.split(':')
|
||||
|
||||
let wholeString = ''
|
||||
for (let i = 0; i < jsonStrArray.length; i++) {
|
||||
if (jsonStrArray[i].includes(',') && jsonStrArray[i + 1] !== undefined) {
|
||||
const splitValueAndTitle = jsonStrArray[i].split(',')
|
||||
const value = splitValueAndTitle[0]
|
||||
const newTitle = splitValueAndTitle[1]
|
||||
wholeString += handleEscapeDoubleQuote(value) + ',' + newTitle + ':'
|
||||
} else {
|
||||
wholeString += wholeString === '' ? jsonStrArray[i] + ':' : handleEscapeDoubleQuote(jsonStrArray[i])
|
||||
}
|
||||
}
|
||||
return wholeString
|
||||
}
|
||||
|
||||
const handleEscapeDoubleQuote = (value: string): string => {
|
||||
let newValue = ''
|
||||
if (value.includes('"')) {
|
||||
const valueArray = value.split('"')
|
||||
for (let i = 0; i < valueArray.length; i++) {
|
||||
if ((i + 1) % 2 !== 0) {
|
||||
switch (valueArray[i]) {
|
||||
case '':
|
||||
newValue += '"'
|
||||
break
|
||||
case '}':
|
||||
newValue += '"}'
|
||||
break
|
||||
default:
|
||||
newValue += '\\"' + valueArray[i] + '\\"'
|
||||
}
|
||||
} else {
|
||||
newValue += valueArray[i]
|
||||
}
|
||||
}
|
||||
}
|
||||
return newValue === '' ? value : newValue
|
||||
}
|
||||
export const availableDependencies = [
|
||||
'@dqbd/tiktoken',
|
||||
'@getzep/zep-js',
|
||||
'@huggingface/inference',
|
||||
'@pinecone-database/pinecone',
|
||||
'@supabase/supabase-js',
|
||||
'axios',
|
||||
'cheerio',
|
||||
'chromadb',
|
||||
'cohere-ai',
|
||||
'd3-dsv',
|
||||
'form-data',
|
||||
'graphql',
|
||||
'html-to-text',
|
||||
'langchain',
|
||||
'linkifyjs',
|
||||
'mammoth',
|
||||
'moment',
|
||||
'node-fetch',
|
||||
'pdf-parse',
|
||||
'pdfjs-dist',
|
||||
'playwright',
|
||||
'puppeteer',
|
||||
'srt-parser-2',
|
||||
'typeorm',
|
||||
'weaviate-ts-client'
|
||||
]
|
||||
|
|
|
|||
|
|
@ -1,4 +1,7 @@
|
|||
PORT=3000
|
||||
# FLOWISE_USERNAME=user
|
||||
# FLOWISE_PASSWORD=1234
|
||||
# DEBUG=true
|
||||
# DATABASE_PATH=/your_database_path/.flowise
|
||||
# APIKEY_PATH=/your_api_key_path/.flowise
|
||||
# EXECUTION_MODE=child or main
|
||||
|
|
@ -1,10 +1,10 @@
|
|||
<!-- markdownlint-disable MD030 -->
|
||||
|
||||
# Flowise - LangchainJS UI
|
||||
# Flowise - Low-Code LLM apps builder
|
||||
|
||||

|
||||
|
||||
Drag & drop UI to build your customized LLM flow using [LangchainJS](https://github.com/hwchase17/langchainjs)
|
||||
Drag & drop UI to build your customized LLM flow
|
||||
|
||||
## ⚡Quick Start
|
||||
|
||||
|
|
@ -29,16 +29,34 @@ FLOWISE_USERNAME=user
|
|||
FLOWISE_PASSWORD=1234
|
||||
```
|
||||
|
||||
## 🔎 Debugging
|
||||
|
||||
You can set `DEBUG=true` to the `.env` file. Refer [here](https://docs.flowiseai.com/environment-variables) for full list of env variables
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
Coming Soon
|
||||
|
||||
## 💻 Cloud Hosted
|
||||
|
||||
Coming Soon
|
||||
[Flowise Docs](https://docs.flowiseai.com/)
|
||||
|
||||
## 🌐 Self Host
|
||||
|
||||
### [Railway](https://docs.flowiseai.com/deployment/railway)
|
||||
|
||||
[](https://railway.app/template/YK7J0v)
|
||||
|
||||
### [Render](https://docs.flowiseai.com/deployment/render)
|
||||
|
||||
[](https://docs.flowiseai.com/deployment/render)
|
||||
|
||||
### [AWS](https://docs.flowiseai.com/deployment/aws)
|
||||
|
||||
### [Azure](https://docs.flowiseai.com/deployment/azure)
|
||||
|
||||
### [DigitalOcean](https://docs.flowiseai.com/deployment/digital-ocean)
|
||||
|
||||
### [GCP](https://docs.flowiseai.com/deployment/gcp)
|
||||
|
||||
## 💻 Cloud Hosted
|
||||
|
||||
Coming Soon
|
||||
|
||||
## 🙋 Support
|
||||
|
|
|
|||
|
|
@ -3,68 +3,7 @@
|
|||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 534,
|
||||
"id": "promptTemplate_1",
|
||||
"position": {
|
||||
"x": 532.2791692529131,
|
||||
"y": -31.128527027841372
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_1",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_1-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_1-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "Word: {word}\\nAntonym: {antonym}\\n",
|
||||
"promptValues": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 532.2791692529131,
|
||||
"y": -31.128527027841372
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 956,
|
||||
"height": 955,
|
||||
"id": "fewShotPromptTemplate_1",
|
||||
"position": {
|
||||
"x": 886.3229032369354,
|
||||
|
|
@ -139,7 +78,7 @@
|
|||
],
|
||||
"inputs": {
|
||||
"examples": "[\n { \"word\": \"happy\", \"antonym\": \"sad\" },\n { \"word\": \"tall\", \"antonym\": \"short\" }\n]",
|
||||
"examplePrompt": "{{promptTemplate_1.data.instance}}",
|
||||
"examplePrompt": "{{promptTemplate_0.data.instance}}",
|
||||
"prefix": "Give the antonym of every input",
|
||||
"suffix": "Word: {input}\\nAntonym:",
|
||||
"exampleSeparator": "\\n\\n",
|
||||
|
|
@ -165,7 +104,7 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 526,
|
||||
"height": 524,
|
||||
"id": "openAI_1",
|
||||
"position": {
|
||||
"x": 1224.5139327142097,
|
||||
|
|
@ -318,7 +257,7 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 407,
|
||||
"height": 405,
|
||||
"id": "llmChain_1",
|
||||
"position": {
|
||||
"x": 1635.363191180743,
|
||||
|
|
@ -375,10 +314,10 @@
|
|||
"type": "LLMChain | BaseChain | BaseLangChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_1-output-outputPrediction-string",
|
||||
"id": "llmChain_1-output-outputPrediction-string|json",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
"type": "string | json"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
|
|
@ -395,20 +334,68 @@
|
|||
},
|
||||
"selected": false,
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 475,
|
||||
"id": "promptTemplate_0",
|
||||
"position": {
|
||||
"x": 540.0140796251119,
|
||||
"y": -33.31673494170347
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_0",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_0-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "json",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_0-input-promptValues-json"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "Word: {word}\\nAntonym: {antonym}\\n",
|
||||
"promptValues": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 540.0140796251119,
|
||||
"y": -33.31673494170347
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"source": "promptTemplate_1",
|
||||
"sourceHandle": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "fewShotPromptTemplate_1",
|
||||
"targetHandle": "fewShotPromptTemplate_1-input-examplePrompt-PromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_1-promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-fewShotPromptTemplate_1-fewShotPromptTemplate_1-input-examplePrompt-PromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "openAI_1",
|
||||
"sourceHandle": "openAI_1-output-openAI-OpenAI|BaseLLM|BaseLanguageModel|BaseLangChain",
|
||||
|
|
@ -430,6 +417,17 @@
|
|||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "promptTemplate_0",
|
||||
"sourceHandle": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "fewShotPromptTemplate_1",
|
||||
"targetHandle": "fewShotPromptTemplate_1-input-examplePrompt-PromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_0-promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-fewShotPromptTemplate_1-fewShotPromptTemplate_1-input-examplePrompt-PromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
@ -1,67 +1,6 @@
|
|||
{
|
||||
"description": "Simple LLM Chain using HuggingFace Inference API on falcon-7b-instruct model",
|
||||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 532,
|
||||
"id": "promptTemplate_1",
|
||||
"position": {
|
||||
"x": 514.5434056794296,
|
||||
"y": 507.47798128037107
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_1",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_1-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_1-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "Question: {question}\n\nAnswer: Let's think step by step.",
|
||||
"promptValues": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 514.5434056794296,
|
||||
"y": 507.47798128037107
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 405,
|
||||
|
|
@ -105,7 +44,7 @@
|
|||
],
|
||||
"inputs": {
|
||||
"model": "{{huggingFaceInference_LLMs_0.data.instance}}",
|
||||
"prompt": "{{promptTemplate_1.data.instance}}",
|
||||
"prompt": "{{promptTemplate_0.data.instance}}",
|
||||
"chainName": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
|
|
@ -121,10 +60,10 @@
|
|||
"type": "LLMChain | BaseChain | BaseLangChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_1-output-outputPrediction-string",
|
||||
"id": "llmChain_1-output-outputPrediction-string|json",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
"type": "string | json"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
|
|
@ -144,7 +83,7 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 427,
|
||||
"height": 429,
|
||||
"id": "huggingFaceInference_LLMs_0",
|
||||
"position": {
|
||||
"x": 503.5630827259226,
|
||||
|
|
@ -245,20 +184,68 @@
|
|||
"y": 50.79125094823999
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 475,
|
||||
"id": "promptTemplate_0",
|
||||
"position": {
|
||||
"x": 506.50436294210306,
|
||||
"y": 504.50766458127396
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_0",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_0-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "json",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_0-input-promptValues-json"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "Question: {question}\n\nAnswer: Let's think step by step.",
|
||||
"promptValues": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 506.50436294210306,
|
||||
"y": 504.50766458127396
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"source": "promptTemplate_1",
|
||||
"sourceHandle": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_1-promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_1-llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "huggingFaceInference_LLMs_0",
|
||||
"sourceHandle": "huggingFaceInference_LLMs_0-output-huggingFaceInference_LLMs-HuggingFaceInference|LLM|BaseLLM|BaseLanguageModel|BaseLangChain",
|
||||
|
|
@ -269,6 +256,17 @@
|
|||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "promptTemplate_0",
|
||||
"sourceHandle": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_0-promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_1-llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
@ -6,8 +6,8 @@
|
|||
"height": 524,
|
||||
"id": "chatOpenAI_0",
|
||||
"position": {
|
||||
"x": 373.8366297840716,
|
||||
"y": 448.58765780622326
|
||||
"x": 648.7470970481406,
|
||||
"y": 462.3331811694268
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -34,33 +34,29 @@
|
|||
"label": "gpt-4",
|
||||
"name": "gpt-4"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-0314",
|
||||
"name": "gpt-4-0314"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-32k-0314",
|
||||
"name": "gpt-4-32k-0314"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-0613",
|
||||
"name": "gpt-4-0613"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-32k",
|
||||
"name": "gpt-4-32k"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-32k-0613",
|
||||
"name": "gpt-4-32k-0613"
|
||||
},
|
||||
{
|
||||
"label": "gpt-3.5-turbo",
|
||||
"name": "gpt-3.5-turbo"
|
||||
},
|
||||
{
|
||||
"label": "gpt-3.5-turbo-0301",
|
||||
"name": "gpt-3.5-turbo-0301"
|
||||
},
|
||||
{
|
||||
"label": "gpt-3.5-turbo-0613",
|
||||
"name": "gpt-3.5-turbo-0613"
|
||||
},
|
||||
{
|
||||
"label": "gpt-3.5-turbo-16k",
|
||||
"name": "gpt-3.5-turbo-16k"
|
||||
},
|
||||
{
|
||||
"label": "gpt-3.5-turbo-16k-0613",
|
||||
"name": "gpt-3.5-turbo-16k-0613"
|
||||
}
|
||||
],
|
||||
"default": "gpt-3.5-turbo",
|
||||
|
|
@ -148,64 +144,8 @@
|
|||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 373.8366297840716,
|
||||
"y": 448.58765780622326
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 280,
|
||||
"id": "openAIFunctionAgent_0",
|
||||
"position": {
|
||||
"x": 1084.5405852317417,
|
||||
"y": 384.4653768834282
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "openAIFunctionAgent_0",
|
||||
"label": "OpenAI Function Agent",
|
||||
"name": "openAIFunctionAgent",
|
||||
"type": "AgentExecutor",
|
||||
"baseClasses": ["AgentExecutor", "BaseChain", "BaseLangChain", "Serializable"],
|
||||
"category": "Agents",
|
||||
"description": "An agent that uses OpenAI's Function Calling functionality to pick the tool and args to call",
|
||||
"inputParams": [],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Allowed Tools",
|
||||
"name": "tools",
|
||||
"type": "Tool",
|
||||
"list": true,
|
||||
"id": "openAIFunctionAgent_0-input-tools-Tool"
|
||||
},
|
||||
{
|
||||
"label": "OpenAI Chat Model",
|
||||
"name": "model",
|
||||
"description": "Only works with gpt-3.5-turbo-0613 and gpt-4-0613. Refer <a target=\"_blank\" href=\"https://platform.openai.com/docs/guides/gpt/function-calling\">docs</a> for more info",
|
||||
"type": "BaseChatModel",
|
||||
"id": "openAIFunctionAgent_0-input-model-BaseChatModel"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"tools": ["{{calculator_0.data.instance}}", "{{serper_0.data.instance}}"],
|
||||
"model": "{{chatOpenAI_0.data.instance}}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "openAIFunctionAgent_0-output-openAIFunctionAgent-AgentExecutor|BaseChain|BaseLangChain|Serializable",
|
||||
"name": "openAIFunctionAgent",
|
||||
"label": "AgentExecutor",
|
||||
"type": "AgentExecutor | BaseChain | BaseLangChain | Serializable"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1084.5405852317417,
|
||||
"y": 384.4653768834282
|
||||
"x": 648.7470970481406,
|
||||
"y": 462.3331811694268
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
|
|
@ -214,8 +154,8 @@
|
|||
"height": 278,
|
||||
"id": "serper_0",
|
||||
"position": {
|
||||
"x": 691.7580226065319,
|
||||
"y": 34.00444633899792
|
||||
"x": 486.27248799490576,
|
||||
"y": 4.465900738576664
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -249,8 +189,8 @@
|
|||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 691.7580226065319,
|
||||
"y": 34.00444633899792
|
||||
"x": 486.27248799490576,
|
||||
"y": 4.465900738576664
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
|
|
@ -259,8 +199,8 @@
|
|||
"height": 143,
|
||||
"id": "calculator_0",
|
||||
"position": {
|
||||
"x": 341.63347110886497,
|
||||
"y": 261.6753474034481
|
||||
"x": 286.4092336819905,
|
||||
"y": 304.05673891709597
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -287,20 +227,198 @@
|
|||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 341.63347110886497,
|
||||
"y": 261.6753474034481
|
||||
"x": 286.4092336819905,
|
||||
"y": 304.05673891709597
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 383,
|
||||
"id": "openAIFunctionAgent_0",
|
||||
"position": {
|
||||
"x": 1341.2259105169032,
|
||||
"y": 318.35651549722945
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "openAIFunctionAgent_0",
|
||||
"label": "OpenAI Function Agent",
|
||||
"name": "openAIFunctionAgent",
|
||||
"type": "AgentExecutor",
|
||||
"baseClasses": ["AgentExecutor", "BaseChain"],
|
||||
"category": "Agents",
|
||||
"description": "An agent that uses OpenAI's Function Calling functionality to pick the tool and args to call",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "System Message",
|
||||
"name": "systemMessage",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"optional": true,
|
||||
"additionalParams": true,
|
||||
"id": "openAIFunctionAgent_0-input-systemMessage-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Allowed Tools",
|
||||
"name": "tools",
|
||||
"type": "Tool",
|
||||
"list": true,
|
||||
"id": "openAIFunctionAgent_0-input-tools-Tool"
|
||||
},
|
||||
{
|
||||
"label": "Memory",
|
||||
"name": "memory",
|
||||
"type": "BaseChatMemory",
|
||||
"id": "openAIFunctionAgent_0-input-memory-BaseChatMemory"
|
||||
},
|
||||
{
|
||||
"label": "OpenAI Chat Model",
|
||||
"name": "model",
|
||||
"description": "Only works with gpt-3.5-turbo-0613 and gpt-4-0613. Refer <a target=\"_blank\" href=\"https://platform.openai.com/docs/guides/gpt/function-calling\">docs</a> for more info",
|
||||
"type": "BaseChatModel",
|
||||
"id": "openAIFunctionAgent_0-input-model-BaseChatModel"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"tools": ["{{serper_0.data.instance}}", "{{calculator_0.data.instance}}", "{{customTool_0.data.instance}}"],
|
||||
"memory": "{{bufferMemory_0.data.instance}}",
|
||||
"model": "{{chatOpenAI_0.data.instance}}",
|
||||
"systemMessage": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "openAIFunctionAgent_0-output-openAIFunctionAgent-AgentExecutor|BaseChain",
|
||||
"name": "openAIFunctionAgent",
|
||||
"label": "AgentExecutor",
|
||||
"type": "AgentExecutor | BaseChain"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1341.2259105169032,
|
||||
"y": 318.35651549722945
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 376,
|
||||
"id": "bufferMemory_0",
|
||||
"position": {
|
||||
"x": 285.7750469157585,
|
||||
"y": 465.1140427303788
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "bufferMemory_0",
|
||||
"label": "Buffer Memory",
|
||||
"name": "bufferMemory",
|
||||
"type": "BufferMemory",
|
||||
"baseClasses": ["BufferMemory", "BaseChatMemory", "BaseMemory"],
|
||||
"category": "Memory",
|
||||
"description": "Remembers previous conversational back and forths directly",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Memory Key",
|
||||
"name": "memoryKey",
|
||||
"type": "string",
|
||||
"default": "chat_history",
|
||||
"id": "bufferMemory_0-input-memoryKey-string"
|
||||
},
|
||||
{
|
||||
"label": "Input Key",
|
||||
"name": "inputKey",
|
||||
"type": "string",
|
||||
"default": "input",
|
||||
"id": "bufferMemory_0-input-inputKey-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"memoryKey": "chat_history",
|
||||
"inputKey": "input"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "bufferMemory_0-output-bufferMemory-BufferMemory|BaseChatMemory|BaseMemory",
|
||||
"name": "bufferMemory",
|
||||
"label": "BufferMemory",
|
||||
"type": "BufferMemory | BaseChatMemory | BaseMemory"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 285.7750469157585,
|
||||
"y": 465.1140427303788
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 277,
|
||||
"id": "customTool_0",
|
||||
"position": {
|
||||
"x": 883.9529939431576,
|
||||
"y": -32.32503903826486
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "customTool_0",
|
||||
"label": "Custom Tool",
|
||||
"name": "customTool",
|
||||
"type": "CustomTool",
|
||||
"baseClasses": ["CustomTool", "Tool", "StructuredTool"],
|
||||
"category": "Tools",
|
||||
"description": "Use custom tool you've created in Flowise within chatflow",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Select Tool",
|
||||
"name": "selectedTool",
|
||||
"type": "asyncOptions",
|
||||
"loadMethod": "listTools",
|
||||
"id": "customTool_0-input-selectedTool-asyncOptions"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"selectedTool": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "customTool_0-output-customTool-CustomTool|Tool|StructuredTool",
|
||||
"name": "customTool",
|
||||
"label": "CustomTool",
|
||||
"type": "CustomTool | Tool | StructuredTool"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 883.9529939431576,
|
||||
"y": -32.32503903826486
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"source": "chatOpenAI_0",
|
||||
"sourceHandle": "chatOpenAI_0-output-chatOpenAI-ChatOpenAI|BaseChatModel|BaseLanguageModel|BaseLangChain|Serializable",
|
||||
"source": "serper_0",
|
||||
"sourceHandle": "serper_0-output-serper-Serper|Tool|StructuredTool|BaseLangChain|Serializable",
|
||||
"target": "openAIFunctionAgent_0",
|
||||
"targetHandle": "openAIFunctionAgent_0-input-model-BaseChatModel",
|
||||
"targetHandle": "openAIFunctionAgent_0-input-tools-Tool",
|
||||
"type": "buttonedge",
|
||||
"id": "chatOpenAI_0-chatOpenAI_0-output-chatOpenAI-ChatOpenAI|BaseChatModel|BaseLanguageModel|BaseLangChain|Serializable-openAIFunctionAgent_0-openAIFunctionAgent_0-input-model-BaseChatModel",
|
||||
"id": "serper_0-serper_0-output-serper-Serper|Tool|StructuredTool|BaseLangChain|Serializable-openAIFunctionAgent_0-openAIFunctionAgent_0-input-tools-Tool",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
|
|
@ -317,12 +435,34 @@
|
|||
}
|
||||
},
|
||||
{
|
||||
"source": "serper_0",
|
||||
"sourceHandle": "serper_0-output-serper-Serper|Tool|StructuredTool|BaseLangChain|Serializable",
|
||||
"source": "chatOpenAI_0",
|
||||
"sourceHandle": "chatOpenAI_0-output-chatOpenAI-ChatOpenAI|BaseChatModel|BaseLanguageModel|BaseLangChain|Serializable",
|
||||
"target": "openAIFunctionAgent_0",
|
||||
"targetHandle": "openAIFunctionAgent_0-input-model-BaseChatModel",
|
||||
"type": "buttonedge",
|
||||
"id": "chatOpenAI_0-chatOpenAI_0-output-chatOpenAI-ChatOpenAI|BaseChatModel|BaseLanguageModel|BaseLangChain|Serializable-openAIFunctionAgent_0-openAIFunctionAgent_0-input-model-BaseChatModel",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "bufferMemory_0",
|
||||
"sourceHandle": "bufferMemory_0-output-bufferMemory-BufferMemory|BaseChatMemory|BaseMemory",
|
||||
"target": "openAIFunctionAgent_0",
|
||||
"targetHandle": "openAIFunctionAgent_0-input-memory-BaseChatMemory",
|
||||
"type": "buttonedge",
|
||||
"id": "bufferMemory_0-bufferMemory_0-output-bufferMemory-BufferMemory|BaseChatMemory|BaseMemory-openAIFunctionAgent_0-openAIFunctionAgent_0-input-memory-BaseChatMemory",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "customTool_0",
|
||||
"sourceHandle": "customTool_0-output-customTool-CustomTool|Tool|StructuredTool",
|
||||
"target": "openAIFunctionAgent_0",
|
||||
"targetHandle": "openAIFunctionAgent_0-input-tools-Tool",
|
||||
"type": "buttonedge",
|
||||
"id": "serper_0-serper_0-output-serper-Serper|Tool|StructuredTool|BaseLangChain|Serializable-openAIFunctionAgent_0-openAIFunctionAgent_0-input-tools-Tool",
|
||||
"id": "customTool_0-customTool_0-output-customTool-CustomTool|Tool|StructuredTool-openAIFunctionAgent_0-openAIFunctionAgent_0-input-tools-Tool",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
|
|
@ -3,7 +3,7 @@
|
|||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 526,
|
||||
"height": 524,
|
||||
"id": "openAI_2",
|
||||
"position": {
|
||||
"x": 793.6674026500068,
|
||||
|
|
@ -156,213 +156,11 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 534,
|
||||
"id": "promptTemplate_2",
|
||||
"position": {
|
||||
"x": 796.3399644963663,
|
||||
"y": 512.349657546027
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_2",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_2-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_2-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "You are an AI who performs one task based on the following objective: {objective}.\nRespond with how you would complete this task:",
|
||||
"promptValues": "{\n \"objective\": \"{{question}}\"\n}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_2-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 796.3399644963663,
|
||||
"y": 512.349657546027
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 407,
|
||||
"id": "llmChain_2",
|
||||
"position": {
|
||||
"x": 1225.2861408370582,
|
||||
"y": 485.62403908243243
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "llmChain_2",
|
||||
"label": "LLM Chain",
|
||||
"name": "llmChain",
|
||||
"type": "LLMChain",
|
||||
"baseClasses": ["LLMChain", "BaseChain", "BaseLangChain"],
|
||||
"category": "Chains",
|
||||
"description": "Chain to run queries against LLMs",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Chain Name",
|
||||
"name": "chainName",
|
||||
"type": "string",
|
||||
"placeholder": "Name Your Chain",
|
||||
"optional": true,
|
||||
"id": "llmChain_2-input-chainName-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Language Model",
|
||||
"name": "model",
|
||||
"type": "BaseLanguageModel",
|
||||
"id": "llmChain_2-input-model-BaseLanguageModel"
|
||||
},
|
||||
{
|
||||
"label": "Prompt",
|
||||
"name": "prompt",
|
||||
"type": "BasePromptTemplate",
|
||||
"id": "llmChain_2-input-prompt-BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"model": "{{openAI_2.data.instance}}",
|
||||
"prompt": "{{promptTemplate_2.data.instance}}",
|
||||
"chainName": "First Chain"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "llmChain_2-output-llmChain-LLMChain|BaseChain|BaseLangChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLM Chain",
|
||||
"type": "LLMChain | BaseChain | BaseLangChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_2-output-outputPrediction-string",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "outputPrediction"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"dragging": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1225.2861408370582,
|
||||
"y": 485.62403908243243
|
||||
}
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 534,
|
||||
"id": "promptTemplate_3",
|
||||
"position": {
|
||||
"x": 1589.206555911206,
|
||||
"y": 460.23470154201766
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_3",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_3-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_3-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "You are a task creation AI that uses the result of an execution agent to create new tasks with the following objective: {objective}.\nThe last completed task has the result: {result}.\nBased on the result, create new tasks to be completed by the AI system that do not overlap with result.\nReturn the tasks as an array.",
|
||||
"promptValues": "{\n \"objective\": \"{{question}}\",\n \"result\": \"\"\n}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_3-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1589.206555911206,
|
||||
"y": 460.23470154201766
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 526,
|
||||
"height": 524,
|
||||
"id": "openAI_3",
|
||||
"position": {
|
||||
"x": 1225.2861408370586,
|
||||
"y": -62.7856517905272
|
||||
"x": 1216.061423775753,
|
||||
"y": -20.35195330852082
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
|
|
@ -503,27 +301,145 @@
|
|||
"selected": false
|
||||
},
|
||||
"positionAbsolute": {
|
||||
"x": 1225.2861408370586,
|
||||
"y": -62.7856517905272
|
||||
"x": 1216.061423775753,
|
||||
"y": -20.35195330852082
|
||||
},
|
||||
"selected": false,
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 407,
|
||||
"id": "llmChain_3",
|
||||
"height": 475,
|
||||
"id": "promptTemplate_0",
|
||||
"position": {
|
||||
"x": 1972.2671768945252,
|
||||
"y": 142.73435419451476
|
||||
"x": 792.9464838535649,
|
||||
"y": 527.1718536712464
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "llmChain_3",
|
||||
"id": "promptTemplate_0",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_0-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "json",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_0-input-promptValues-json"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "You are an AI who performs one task based on the following objective: {objective}.\nRespond with how you would complete this task:",
|
||||
"promptValues": "{\"objective\":\"{{question}}\"}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 792.9464838535649,
|
||||
"y": 527.1718536712464
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 475,
|
||||
"id": "promptTemplate_1",
|
||||
"position": {
|
||||
"x": 1577.7482561604884,
|
||||
"y": 516.186942924815
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_1",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_1-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "json",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_1-input-promptValues-json"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "You are a task creation AI that uses the result of an execution agent to create new tasks with the following objective: {objective}.\nThe last completed task has the result: {result}.\nBased on the result, create new tasks to be completed by the AI system that do not overlap with result.\nReturn the tasks as an array.",
|
||||
"promptValues": "{\"objective\":\"{{question}}\",\"result\":\"{{llmChain_0.data.instance}}\"}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"positionAbsolute": {
|
||||
"x": 1577.7482561604884,
|
||||
"y": 516.186942924815
|
||||
},
|
||||
"selected": false,
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 405,
|
||||
"id": "llmChain_0",
|
||||
"position": {
|
||||
"x": 1221.1346231272787,
|
||||
"y": 538.9546839784628
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "llmChain_0",
|
||||
"label": "LLM Chain",
|
||||
"name": "llmChain",
|
||||
"type": "LLMChain",
|
||||
"baseClasses": ["LLMChain", "BaseChain", "BaseLangChain"],
|
||||
"baseClasses": ["LLMChain", "BaseChain"],
|
||||
"category": "Chains",
|
||||
"description": "Chain to run queries against LLMs",
|
||||
"inputParams": [
|
||||
|
|
@ -533,7 +449,7 @@
|
|||
"type": "string",
|
||||
"placeholder": "Name Your Chain",
|
||||
"optional": true,
|
||||
"id": "llmChain_3-input-chainName-string"
|
||||
"id": "llmChain_0-input-chainName-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
|
|
@ -541,18 +457,98 @@
|
|||
"label": "Language Model",
|
||||
"name": "model",
|
||||
"type": "BaseLanguageModel",
|
||||
"id": "llmChain_3-input-model-BaseLanguageModel"
|
||||
"id": "llmChain_0-input-model-BaseLanguageModel"
|
||||
},
|
||||
{
|
||||
"label": "Prompt",
|
||||
"name": "prompt",
|
||||
"type": "BasePromptTemplate",
|
||||
"id": "llmChain_3-input-prompt-BasePromptTemplate"
|
||||
"id": "llmChain_0-input-prompt-BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"model": "{{openAI_2.data.instance}}",
|
||||
"prompt": "{{promptTemplate_0.data.instance}}",
|
||||
"chainName": "FirstChain"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"name": "output",
|
||||
"label": "Output",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "llmChain_0-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLM Chain",
|
||||
"type": "LLMChain | BaseChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_0-output-outputPrediction-string|json",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string | json"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
}
|
||||
],
|
||||
"outputs": {
|
||||
"output": "outputPrediction"
|
||||
},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1221.1346231272787,
|
||||
"y": 538.9546839784628
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 405,
|
||||
"id": "llmChain_1",
|
||||
"position": {
|
||||
"x": 1971.8054567964418,
|
||||
"y": 207.624530381245
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "llmChain_1",
|
||||
"label": "LLM Chain",
|
||||
"name": "llmChain",
|
||||
"type": "LLMChain",
|
||||
"baseClasses": ["LLMChain", "BaseChain"],
|
||||
"category": "Chains",
|
||||
"description": "Chain to run queries against LLMs",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Chain Name",
|
||||
"name": "chainName",
|
||||
"type": "string",
|
||||
"placeholder": "Name Your Chain",
|
||||
"optional": true,
|
||||
"id": "llmChain_1-input-chainName-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [
|
||||
{
|
||||
"label": "Language Model",
|
||||
"name": "model",
|
||||
"type": "BaseLanguageModel",
|
||||
"id": "llmChain_1-input-model-BaseLanguageModel"
|
||||
},
|
||||
{
|
||||
"label": "Prompt",
|
||||
"name": "prompt",
|
||||
"type": "BasePromptTemplate",
|
||||
"id": "llmChain_1-input-prompt-BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"inputs": {
|
||||
"model": "{{openAI_3.data.instance}}",
|
||||
"prompt": "{{promptTemplate_3.data.instance}}",
|
||||
"prompt": "{{promptTemplate_1.data.instance}}",
|
||||
"chainName": "LastChain"
|
||||
},
|
||||
"outputAnchors": [
|
||||
|
|
@ -562,16 +558,16 @@
|
|||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"id": "llmChain_3-output-llmChain-LLMChain|BaseChain|BaseLangChain",
|
||||
"id": "llmChain_1-output-llmChain-LLMChain|BaseChain",
|
||||
"name": "llmChain",
|
||||
"label": "LLM Chain",
|
||||
"type": "LLMChain | BaseChain | BaseLangChain"
|
||||
"type": "LLMChain | BaseChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_3-output-outputPrediction-string",
|
||||
"id": "llmChain_1-output-outputPrediction-string|json",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
"type": "string | json"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
|
|
@ -583,43 +579,43 @@
|
|||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"dragging": false,
|
||||
"positionAbsolute": {
|
||||
"x": 1972.2671768945252,
|
||||
"y": 142.73435419451476
|
||||
}
|
||||
"x": 1971.8054567964418,
|
||||
"y": 207.624530381245
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"source": "llmChain_2",
|
||||
"sourceHandle": "llmChain_2-output-outputPrediction-string",
|
||||
"target": "promptTemplate_3",
|
||||
"targetHandle": "promptTemplate_3-input-promptValues-string",
|
||||
"type": "buttonedge",
|
||||
"id": "llmChain_2-llmChain_2-output-outputPrediction-string-promptTemplate_3-promptTemplate_3-input-promptValues-string",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "openAI_2",
|
||||
"sourceHandle": "openAI_2-output-openAI-OpenAI|BaseLLM|BaseLanguageModel|BaseLangChain",
|
||||
"target": "llmChain_2",
|
||||
"targetHandle": "llmChain_2-input-model-BaseLanguageModel",
|
||||
"target": "llmChain_0",
|
||||
"targetHandle": "llmChain_0-input-model-BaseLanguageModel",
|
||||
"type": "buttonedge",
|
||||
"id": "openAI_2-openAI_2-output-openAI-OpenAI|BaseLLM|BaseLanguageModel|BaseLangChain-llmChain_2-llmChain_2-input-model-BaseLanguageModel",
|
||||
"id": "openAI_2-openAI_2-output-openAI-OpenAI|BaseLLM|BaseLanguageModel|BaseLangChain-llmChain_0-llmChain_0-input-model-BaseLanguageModel",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "promptTemplate_2",
|
||||
"sourceHandle": "promptTemplate_2-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_2",
|
||||
"targetHandle": "llmChain_2-input-prompt-BasePromptTemplate",
|
||||
"source": "promptTemplate_0",
|
||||
"sourceHandle": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_0",
|
||||
"targetHandle": "llmChain_0-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_2-promptTemplate_2-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_2-llmChain_2-input-prompt-BasePromptTemplate",
|
||||
"id": "promptTemplate_0-promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_0-llmChain_0-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "llmChain_0",
|
||||
"sourceHandle": "llmChain_0-output-outputPrediction-string|json",
|
||||
"target": "promptTemplate_1",
|
||||
"targetHandle": "promptTemplate_1-input-promptValues-json",
|
||||
"type": "buttonedge",
|
||||
"id": "llmChain_0-llmChain_0-output-outputPrediction-string|json-promptTemplate_1-promptTemplate_1-input-promptValues-json",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
|
|
@ -627,21 +623,21 @@
|
|||
{
|
||||
"source": "openAI_3",
|
||||
"sourceHandle": "openAI_3-output-openAI-OpenAI|BaseLLM|BaseLanguageModel|BaseLangChain",
|
||||
"target": "llmChain_3",
|
||||
"targetHandle": "llmChain_3-input-model-BaseLanguageModel",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-model-BaseLanguageModel",
|
||||
"type": "buttonedge",
|
||||
"id": "openAI_3-openAI_3-output-openAI-OpenAI|BaseLLM|BaseLanguageModel|BaseLangChain-llmChain_3-llmChain_3-input-model-BaseLanguageModel",
|
||||
"id": "openAI_3-openAI_3-output-openAI-OpenAI|BaseLLM|BaseLanguageModel|BaseLangChain-llmChain_1-llmChain_1-input-model-BaseLanguageModel",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "promptTemplate_3",
|
||||
"sourceHandle": "promptTemplate_3-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_3",
|
||||
"targetHandle": "llmChain_3-input-prompt-BasePromptTemplate",
|
||||
"source": "promptTemplate_1",
|
||||
"sourceHandle": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_3-promptTemplate_3-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_3-llmChain_3-input-prompt-BasePromptTemplate",
|
||||
"id": "promptTemplate_1-promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_1-llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
|
|
@ -3,7 +3,7 @@
|
|||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 526,
|
||||
"height": 524,
|
||||
"id": "openAI_1",
|
||||
"position": {
|
||||
"x": 510.75932526856377,
|
||||
|
|
@ -156,68 +156,7 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 534,
|
||||
"id": "promptTemplate_1",
|
||||
"position": {
|
||||
"x": 514.5434056794296,
|
||||
"y": 507.47798128037107
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_1",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_1-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_1-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "",
|
||||
"promptValues": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 514.5434056794296,
|
||||
"y": 507.47798128037107
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 407,
|
||||
"height": 405,
|
||||
"id": "llmChain_1",
|
||||
"position": {
|
||||
"x": 970.9254258940236,
|
||||
|
|
@ -258,7 +197,7 @@
|
|||
],
|
||||
"inputs": {
|
||||
"model": "{{openAI_1.data.instance}}",
|
||||
"prompt": "{{promptTemplate_1.data.instance}}",
|
||||
"prompt": "{{promptTemplate_0.data.instance}}",
|
||||
"chainName": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
|
|
@ -274,10 +213,10 @@
|
|||
"type": "LLMChain | BaseChain | BaseLangChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_1-output-outputPrediction-string",
|
||||
"id": "llmChain_1-output-outputPrediction-string|json",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
"type": "string | json"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
|
|
@ -294,6 +233,65 @@
|
|||
},
|
||||
"selected": false,
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 475,
|
||||
"id": "promptTemplate_0",
|
||||
"position": {
|
||||
"x": 517.7412884791509,
|
||||
"y": 506.7411400888471
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "promptTemplate_0",
|
||||
"label": "Prompt Template",
|
||||
"name": "promptTemplate",
|
||||
"type": "PromptTemplate",
|
||||
"baseClasses": ["PromptTemplate", "BaseStringPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a basic prompt for an LLM",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Template",
|
||||
"name": "template",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "What is a good name for a company that makes {product}?",
|
||||
"id": "promptTemplate_0-input-template-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "json",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "promptTemplate_0-input-promptValues-json"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"template": "What is a good name for a company that makes {product}?",
|
||||
"promptValues": ""
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"name": "promptTemplate",
|
||||
"label": "PromptTemplate",
|
||||
"type": "PromptTemplate | BaseStringPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 517.7412884791509,
|
||||
"y": 506.7411400888471
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
|
|
@ -309,12 +307,12 @@
|
|||
}
|
||||
},
|
||||
{
|
||||
"source": "promptTemplate_1",
|
||||
"sourceHandle": "promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"source": "promptTemplate_0",
|
||||
"sourceHandle": "promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "promptTemplate_1-promptTemplate_1-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_1-llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"id": "promptTemplate_0-promptTemplate_0-output-promptTemplate-PromptTemplate|BaseStringPromptTemplate|BasePromptTemplate-llmChain_1-llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
|
|
@ -3,77 +3,7 @@
|
|||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 711,
|
||||
"id": "chatPromptTemplate_1",
|
||||
"position": {
|
||||
"x": 441.8516979620723,
|
||||
"y": 636.1108860994266
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "chatPromptTemplate_1",
|
||||
"label": "Chat Prompt Template",
|
||||
"name": "chatPromptTemplate",
|
||||
"type": "ChatPromptTemplate",
|
||||
"baseClasses": ["ChatPromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a chat prompt",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "System Message",
|
||||
"name": "systemMessagePrompt",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "You are a helpful assistant that translates {input_language} to {output_language}.",
|
||||
"id": "chatPromptTemplate_1-input-systemMessagePrompt-string"
|
||||
},
|
||||
{
|
||||
"label": "Human Message",
|
||||
"name": "humanMessagePrompt",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "{text}",
|
||||
"id": "chatPromptTemplate_1-input-humanMessagePrompt-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "chatPromptTemplate_1-input-promptValues-string"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"systemMessagePrompt": "You are a helpful assistant that translates {input_language} to {output_language}.",
|
||||
"humanMessagePrompt": "{input}",
|
||||
"promptValues": "{\n \"input_language\": \"English\",\n \"output_language\": \"French\"\n}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "chatPromptTemplate_1-output-chatPromptTemplate-ChatPromptTemplate|BaseChatPromptTemplate|BasePromptTemplate",
|
||||
"name": "chatPromptTemplate",
|
||||
"label": "ChatPromptTemplate",
|
||||
"type": "ChatPromptTemplate | BaseChatPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 441.8516979620723,
|
||||
"y": 636.1108860994266
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 526,
|
||||
"height": 524,
|
||||
"id": "chatOpenAI_1",
|
||||
"position": {
|
||||
"x": 439.5219561593599,
|
||||
|
|
@ -224,7 +154,7 @@
|
|||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 407,
|
||||
"height": 405,
|
||||
"id": "llmChain_1",
|
||||
"position": {
|
||||
"x": 865.7775572410412,
|
||||
|
|
@ -265,7 +195,7 @@
|
|||
],
|
||||
"inputs": {
|
||||
"model": "{{chatOpenAI_1.data.instance}}",
|
||||
"prompt": "{{chatPromptTemplate_1.data.instance}}",
|
||||
"prompt": "{{chatPromptTemplate_0.data.instance}}",
|
||||
"chainName": "Language Translation"
|
||||
},
|
||||
"outputAnchors": [
|
||||
|
|
@ -281,10 +211,10 @@
|
|||
"type": "LLMChain | BaseChain | BaseLangChain"
|
||||
},
|
||||
{
|
||||
"id": "llmChain_1-output-outputPrediction-string",
|
||||
"id": "llmChain_1-output-outputPrediction-string|json",
|
||||
"name": "outputPrediction",
|
||||
"label": "Output Prediction",
|
||||
"type": "string"
|
||||
"type": "string | json"
|
||||
}
|
||||
],
|
||||
"default": "llmChain"
|
||||
|
|
@ -301,6 +231,74 @@
|
|||
"y": 543.9211372857111
|
||||
},
|
||||
"dragging": false
|
||||
},
|
||||
{
|
||||
"width": 300,
|
||||
"height": 652,
|
||||
"id": "chatPromptTemplate_0",
|
||||
"position": {
|
||||
"x": 437.51367850489396,
|
||||
"y": 649.7619214034173
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "chatPromptTemplate_0",
|
||||
"label": "Chat Prompt Template",
|
||||
"name": "chatPromptTemplate",
|
||||
"type": "ChatPromptTemplate",
|
||||
"baseClasses": ["ChatPromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate"],
|
||||
"category": "Prompts",
|
||||
"description": "Schema to represent a chat prompt",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "System Message",
|
||||
"name": "systemMessagePrompt",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "You are a helpful assistant that translates {input_language} to {output_language}.",
|
||||
"id": "chatPromptTemplate_0-input-systemMessagePrompt-string"
|
||||
},
|
||||
{
|
||||
"label": "Human Message",
|
||||
"name": "humanMessagePrompt",
|
||||
"type": "string",
|
||||
"rows": 4,
|
||||
"placeholder": "{text}",
|
||||
"id": "chatPromptTemplate_0-input-humanMessagePrompt-string"
|
||||
},
|
||||
{
|
||||
"label": "Format Prompt Values",
|
||||
"name": "promptValues",
|
||||
"type": "json",
|
||||
"optional": true,
|
||||
"acceptVariable": true,
|
||||
"list": true,
|
||||
"id": "chatPromptTemplate_0-input-promptValues-json"
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"systemMessagePrompt": "You are a helpful assistant that translates {input_language} to {output_language}.",
|
||||
"humanMessagePrompt": "{text}",
|
||||
"promptValues": "{\"input_language\":\"English\",\"output_language\":\"French\",\"text\":\"{{question}}\"}"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "chatPromptTemplate_0-output-chatPromptTemplate-ChatPromptTemplate|BaseChatPromptTemplate|BasePromptTemplate",
|
||||
"name": "chatPromptTemplate",
|
||||
"label": "ChatPromptTemplate",
|
||||
"type": "ChatPromptTemplate | BaseChatPromptTemplate | BasePromptTemplate"
|
||||
}
|
||||
],
|
||||
"outputs": {},
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"positionAbsolute": {
|
||||
"x": 437.51367850489396,
|
||||
"y": 649.7619214034173
|
||||
},
|
||||
"dragging": false
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
|
|
@ -316,12 +314,12 @@
|
|||
}
|
||||
},
|
||||
{
|
||||
"source": "chatPromptTemplate_1",
|
||||
"sourceHandle": "chatPromptTemplate_1-output-chatPromptTemplate-ChatPromptTemplate|BaseChatPromptTemplate|BasePromptTemplate",
|
||||
"source": "chatPromptTemplate_0",
|
||||
"sourceHandle": "chatPromptTemplate_0-output-chatPromptTemplate-ChatPromptTemplate|BaseChatPromptTemplate|BasePromptTemplate",
|
||||
"target": "llmChain_1",
|
||||
"targetHandle": "llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"type": "buttonedge",
|
||||
"id": "chatPromptTemplate_1-chatPromptTemplate_1-output-chatPromptTemplate-ChatPromptTemplate|BaseChatPromptTemplate|BasePromptTemplate-llmChain_1-llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"id": "chatPromptTemplate_0-chatPromptTemplate_0-output-chatPromptTemplate-ChatPromptTemplate|BaseChatPromptTemplate|BasePromptTemplate-llmChain_1-llmChain_1-input-prompt-BasePromptTemplate",
|
||||
"data": {
|
||||
"label": ""
|
||||
}
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
{
|
||||
"name": "add_contact_hubspot",
|
||||
"description": "Add new contact to Hubspot",
|
||||
"color": "linear-gradient(rgb(85,198,123), rgb(0,230,99))",
|
||||
"iconSrc": "https://cdn.worldvectorlogo.com/logos/hubspot-1.svg",
|
||||
"schema": "[{\"id\":1,\"property\":\"email\",\"description\":\"email address of contact\",\"type\":\"string\",\"required\":true},{\"id\":2,\"property\":\"firstname\",\"description\":\"first name of contact\",\"type\":\"string\",\"required\":false},{\"id\":3,\"property\":\"lastname\",\"description\":\"last name of contact\",\"type\":\"string\",\"required\":false}]",
|
||||
"func": "const fetch = require('node-fetch');\nconst url = 'https://api.hubapi.com/crm/v3/objects/contacts'\nconst token = 'YOUR-TOKEN';\n\nconst body = {\n\t\"properties\": {\n\t \"email\": $email\n\t}\n};\n\nif ($firstname) body.properties.firstname = $firstname;\nif ($lastname) body.properties.lastname = $lastname;\n\nconst options = {\n\tmethod: 'POST',\n\theaders: {\n\t 'Authorization': `Bearer ${token}`,\n\t\t'Content-Type': 'application/json'\n\t},\n\tbody: JSON.stringify(body)\n};\n\ntry {\n\tconst response = await fetch(url, options);\n\tconst text = await response.text();\n\treturn text;\n} catch (error) {\n\tconsole.error(error);\n\treturn '';\n}"
|
||||
}
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
{
|
||||
"name": "add_airtable",
|
||||
"description": "Add column1, column2 to Airtable",
|
||||
"color": "linear-gradient(rgb(125,71,222), rgb(128,102,23))",
|
||||
"iconSrc": "https://raw.githubusercontent.com/gilbarbara/logos/main/logos/airtable.svg",
|
||||
"schema": "[{\"id\":0,\"property\":\"column1\",\"description\":\"this is column1\",\"type\":\"string\",\"required\":true},{\"id\":1,\"property\":\"column2\",\"description\":\"this is column2\",\"type\":\"string\",\"required\":true}]",
|
||||
"func": "const fetch = require('node-fetch');\nconst baseId = 'YOUR-BASE-ID';\nconst tableId = 'YOUR-TABLE-ID';\nconst token = 'YOUR-TOKEN';\n\nconst body = {\n\t\"records\": [\n\t\t{\n\t\t\t\"fields\": {\n\t\t\t\t\"column1\": $column1,\n\t\t\t\t\"column2\": $column2,\n\t\t\t}\n\t\t}\n\t]\n};\n\nconst options = {\n\tmethod: 'POST',\n\theaders: {\n\t\t'Authorization': `Bearer ${token}`,\n\t\t'Content-Type': 'application/json'\n\t},\n\tbody: JSON.stringify(body)\n};\n\nconst url = `https://api.airtable.com/v0/${baseId}/${tableId}`\n\ntry {\n\tconst response = await fetch(url, options);\n\tconst text = await response.text();\n\treturn text;\n} catch (error) {\n\tconsole.error(error);\n\treturn '';\n}"
|
||||
}
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
{
|
||||
"name": "get_stock_movers",
|
||||
"description": "Get the stocks that has biggest price/volume moves, e.g. actives, gainers, losers, etc.",
|
||||
"iconSrc": "https://rapidapi.com/cdn/images?url=https://rapidapi-prod-apis.s3.amazonaws.com/9c/e743343bdd41edad39a3fdffd5b974/016c33699f51603ae6fe4420c439124b.png",
|
||||
"color": "linear-gradient(rgb(191,202,167), rgb(143,202,246))",
|
||||
"schema": "[]",
|
||||
"func": "const fetch = require('node-fetch');\nconst url = 'https://morning-star.p.rapidapi.com/market/v2/get-movers';\nconst options = {\n\tmethod: 'GET',\n\theaders: {\n\t\t'X-RapidAPI-Key': 'YOUR-API-KEY',\n\t\t'X-RapidAPI-Host': 'morning-star.p.rapidapi.com'\n\t}\n};\n\ntry {\n\tconst response = await fetch(url, options);\n\tconst result = await response.text();\n\tconsole.log(result);\n\treturn result;\n} catch (error) {\n\tconsole.error(error);\n\treturn '';\n}"
|
||||
}
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
{
|
||||
"name": "send_message_to_discord_channel",
|
||||
"description": "Send message to Discord channel",
|
||||
"color": "linear-gradient(rgb(155,190,84), rgb(176,69,245))",
|
||||
"iconSrc": "https://raw.githubusercontent.com/gilbarbara/logos/main/logos/discord-icon.svg",
|
||||
"schema": "[{\"id\":1,\"property\":\"content\",\"description\":\"message to send\",\"type\":\"string\",\"required\":true}]",
|
||||
"func": "const fetch = require('node-fetch');\nconst webhookUrl = 'YOUR-WEBHOOK-URL'\n\nconst body = {\n\t\"content\": $content\n};\n\nconst options = {\n\tmethod: 'POST',\n\theaders: {\n\t\t'Content-Type': 'application/json'\n\t},\n\tbody: JSON.stringify(body)\n};\n\nconst url = `${webhookUrl}?wait=true`\n\ntry {\n\tconst response = await fetch(url, options);\n\tconst text = await response.text();\n\treturn text;\n} catch (error) {\n\tconsole.error(error);\n\treturn '';\n}"
|
||||
}
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
{
|
||||
"name": "send_message_to_slack_channel",
|
||||
"description": "Send message to Slack channel",
|
||||
"color": "linear-gradient(rgb(155,190,84), rgb(176,69,245))",
|
||||
"iconSrc": "https://raw.githubusercontent.com/gilbarbara/logos/main/logos/slack-icon.svg",
|
||||
"schema": "[{\"id\":1,\"property\":\"text\",\"description\":\"message to send\",\"type\":\"string\",\"required\":true}]",
|
||||
"func": "const fetch = require('node-fetch');\nconst webhookUrl = 'YOUR-WEBHOOK-URL'\n\nconst body = {\n\t\"text\": $text\n};\n\nconst options = {\n\tmethod: 'POST',\n\theaders: {\n\t\t'Content-Type': 'application/json'\n\t},\n\tbody: JSON.stringify(body)\n};\n\nconst url = `${webhookUrl}`\n\ntry {\n\tconst response = await fetch(url, options);\n\tconst text = await response.text();\n\treturn text;\n} catch (error) {\n\tconsole.error(error);\n\treturn '';\n}"
|
||||
}
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
{
|
||||
"name": "send_message_to_teams_channel",
|
||||
"description": "Send message to Teams channel",
|
||||
"color": "linear-gradient(rgb(155,190,84), rgb(176,69,245))",
|
||||
"iconSrc": "https://raw.githubusercontent.com/gilbarbara/logos/main/logos/microsoft-teams.svg",
|
||||
"schema": "[{\"id\":1,\"property\":\"content\",\"description\":\"message to send\",\"type\":\"string\",\"required\":true}]",
|
||||
"func": "const fetch = require('node-fetch');\nconst webhookUrl = 'YOUR-WEBHOOK-URL'\n\nconst body = {\n\t\"content\": $content\n};\n\nconst options = {\n\tmethod: 'POST',\n\theaders: {\n\t\t'Content-Type': 'application/json'\n\t},\n\tbody: JSON.stringify(body)\n};\n\nconst url = `${webhookUrl}?wait=true`\n\ntry {\n\tconst response = await fetch(url, options);\n\tconst text = await response.text();\n\treturn text;\n} catch (error) {\n\tconsole.error(error);\n\treturn '';\n}"
|
||||
}
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
{
|
||||
"name": "sendgrid_email",
|
||||
"description": "Send email using SendGrid",
|
||||
"color": "linear-gradient(rgb(230,108,70), rgb(222,4,98))",
|
||||
"iconSrc": "https://raw.githubusercontent.com/gilbarbara/logos/main/logos/sendgrid-icon.svg",
|
||||
"schema": "[{\"id\":0,\"property\":\"fromEmail\",\"description\":\"Email address used to send the message\",\"type\":\"string\",\"required\":true},{\"id\":1,\"property\":\"toEmail \",\"description\":\"The intended recipient's email address\",\"type\":\"string\",\"required\":true},{\"id\":2,\"property\":\"subject\",\"description\":\"The subject of email\",\"type\":\"string\",\"required\":true},{\"id\":3,\"property\":\"content\",\"description\":\"Content of email\",\"type\":\"string\",\"required\":true}]",
|
||||
"func": "const fetch = require('node-fetch');\nconst url = 'https://api.sendgrid.com/v3/mail/send';\nconst api_key = 'YOUR-API-KEY';\n\nconst body = {\n \"personalizations\": [\n {\n \"to\": [{ \"email\": $toEmail }]\n }\n ],\n\t\"from\": {\n\t \"email\": $fromEmail\n\t},\n\t\"subject\": $subject,\n\t\"content\": [\n\t {\n\t \"type\": 'text/plain',\n\t \"value\": $content\n\t }\n\t]\n};\n\nconst options = {\n\tmethod: 'POST',\n\theaders: {\n\t 'Authorization': `Bearer ${api_key}`,\n\t\t'Content-Type': 'application/json'\n\t},\n\tbody: JSON.stringify(body)\n};\n\ntry {\n\tconst response = await fetch(url, options);\n\tconst text = await response.text();\n\treturn text;\n} catch (error) {\n\tconsole.error(error);\n\treturn '';\n}"
|
||||
}
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"name": "flowise",
|
||||
"version": "1.2.12",
|
||||
"version": "1.2.14",
|
||||
"description": "Flowiseai Server",
|
||||
"main": "dist/index",
|
||||
"types": "dist/index.d.ts",
|
||||
|
|
|
|||
|
|
@ -1,5 +1,10 @@
|
|||
import path from 'path'
|
||||
import { IChildProcessMessage, IReactFlowNode, IReactFlowObject, IRunChatflowMessageValue, INodeData } from './Interface'
|
||||
import { buildLangchain, constructGraphs, getEndingNode, getStartingNodes, resolveVariables } from './utils'
|
||||
import { buildLangchain, constructGraphs, getEndingNode, getStartingNodes, getUserHome, resolveVariables } from './utils'
|
||||
import { DataSource } from 'typeorm'
|
||||
import { ChatFlow } from './entity/ChatFlow'
|
||||
import { ChatMessage } from './entity/ChatMessage'
|
||||
import { Tool } from './entity/Tool'
|
||||
|
||||
export class ChildProcess {
|
||||
/**
|
||||
|
|
@ -22,6 +27,8 @@ export class ChildProcess {
|
|||
|
||||
await sendToParentProcess('start', '_')
|
||||
|
||||
const childAppDataSource = await initDB()
|
||||
|
||||
// Create a Queue and add our initial node in it
|
||||
const { endingNodeData, chatflow, chatId, incomingInput, componentNodes } = messageValue
|
||||
|
||||
|
|
@ -84,6 +91,7 @@ export class ChildProcess {
|
|||
componentNodes,
|
||||
incomingInput.question,
|
||||
chatId,
|
||||
childAppDataSource,
|
||||
incomingInput?.overrideConfig
|
||||
)
|
||||
|
||||
|
|
@ -115,6 +123,22 @@ export class ChildProcess {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Initalize DB in child process
|
||||
* @returns {DataSource}
|
||||
*/
|
||||
async function initDB() {
|
||||
const homePath = process.env.DATABASE_PATH ?? path.join(getUserHome(), '.flowise')
|
||||
const childAppDataSource = new DataSource({
|
||||
type: 'sqlite',
|
||||
database: path.resolve(homePath, 'database.sqlite'),
|
||||
synchronize: true,
|
||||
entities: [ChatFlow, ChatMessage, Tool],
|
||||
migrations: []
|
||||
})
|
||||
return await childAppDataSource.initialize()
|
||||
}
|
||||
|
||||
/**
|
||||
* Send data back to parent process
|
||||
* @param {string} key Key of message
|
||||
|
|
|
|||
|
|
@ -3,18 +3,19 @@ import path from 'path'
|
|||
import { DataSource } from 'typeorm'
|
||||
import { ChatFlow } from './entity/ChatFlow'
|
||||
import { ChatMessage } from './entity/ChatMessage'
|
||||
import { Tool } from './entity/Tool'
|
||||
import { getUserHome } from './utils'
|
||||
|
||||
let appDataSource: DataSource
|
||||
|
||||
export const init = async (): Promise<void> => {
|
||||
const homePath = path.join(getUserHome(), '.flowise')
|
||||
const homePath = process.env.DATABASE_PATH ?? path.join(getUserHome(), '.flowise')
|
||||
|
||||
appDataSource = new DataSource({
|
||||
type: 'sqlite',
|
||||
database: path.resolve(homePath, 'database.sqlite'),
|
||||
synchronize: true,
|
||||
entities: [ChatFlow, ChatMessage],
|
||||
entities: [ChatFlow, ChatMessage, Tool],
|
||||
migrations: []
|
||||
})
|
||||
}
|
||||
|
|
|
|||
|
|
@ -9,10 +9,12 @@ export interface IChatFlow {
|
|||
id: string
|
||||
name: string
|
||||
flowData: string
|
||||
apikeyid: string
|
||||
deployed: boolean
|
||||
updatedDate: Date
|
||||
createdDate: Date
|
||||
deployed?: boolean
|
||||
isPublic?: boolean
|
||||
apikeyid?: string
|
||||
chatbotConfig?: string
|
||||
}
|
||||
|
||||
export interface IChatMessage {
|
||||
|
|
@ -21,7 +23,19 @@ export interface IChatMessage {
|
|||
content: string
|
||||
chatflowid: string
|
||||
createdDate: Date
|
||||
sourceDocuments: string
|
||||
sourceDocuments?: string
|
||||
}
|
||||
|
||||
export interface ITool {
|
||||
id: string
|
||||
name: string
|
||||
description: string
|
||||
color: string
|
||||
iconSrc?: string
|
||||
schema?: string
|
||||
func?: string
|
||||
updatedDate: Date
|
||||
createdDate: Date
|
||||
}
|
||||
|
||||
export interface IComponentNodes {
|
||||
|
|
|
|||
|
|
@ -18,6 +18,9 @@ export default class Start extends Command {
|
|||
FLOWISE_USERNAME: Flags.string(),
|
||||
FLOWISE_PASSWORD: Flags.string(),
|
||||
PORT: Flags.string(),
|
||||
DEBUG: Flags.string(),
|
||||
DATABASE_PATH: Flags.string(),
|
||||
APIKEY_PATH: Flags.string(),
|
||||
EXECUTION_MODE: Flags.string()
|
||||
}
|
||||
|
||||
|
|
@ -53,7 +56,10 @@ export default class Start extends Command {
|
|||
if (flags.FLOWISE_USERNAME) process.env.FLOWISE_USERNAME = flags.FLOWISE_USERNAME
|
||||
if (flags.FLOWISE_PASSWORD) process.env.FLOWISE_PASSWORD = flags.FLOWISE_PASSWORD
|
||||
if (flags.PORT) process.env.PORT = flags.PORT
|
||||
if (flags.DATABASE_PATH) process.env.DATABASE_PATH = flags.DATABASE_PATH
|
||||
if (flags.APIKEY_PATH) process.env.APIKEY_PATH = flags.APIKEY_PATH
|
||||
if (flags.EXECUTION_MODE) process.env.EXECUTION_MODE = flags.EXECUTION_MODE
|
||||
if (flags.DEBUG) process.env.DEBUG = flags.DEBUG
|
||||
|
||||
await (async () => {
|
||||
try {
|
||||
|
|
|
|||
|
|
@ -14,10 +14,16 @@ export class ChatFlow implements IChatFlow {
|
|||
flowData: string
|
||||
|
||||
@Column({ nullable: true })
|
||||
apikeyid: string
|
||||
deployed?: boolean
|
||||
|
||||
@Column()
|
||||
deployed: boolean
|
||||
@Column({ nullable: true })
|
||||
isPublic?: boolean
|
||||
|
||||
@Column({ nullable: true })
|
||||
apikeyid?: string
|
||||
|
||||
@Column({ nullable: true })
|
||||
chatbotConfig?: string
|
||||
|
||||
@CreateDateColumn()
|
||||
createdDate: Date
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ export class ChatMessage implements IChatMessage {
|
|||
content: string
|
||||
|
||||
@Column({ nullable: true })
|
||||
sourceDocuments: string
|
||||
sourceDocuments?: string
|
||||
|
||||
@CreateDateColumn()
|
||||
createdDate: Date
|
||||
|
|
|
|||
|
|
@ -0,0 +1,33 @@
|
|||
/* eslint-disable */
|
||||
import { Entity, Column, CreateDateColumn, UpdateDateColumn, PrimaryGeneratedColumn } from 'typeorm'
|
||||
import { ITool } from '../Interface'
|
||||
|
||||
@Entity()
|
||||
export class Tool implements ITool {
|
||||
@PrimaryGeneratedColumn('uuid')
|
||||
id: string
|
||||
|
||||
@Column()
|
||||
name: string
|
||||
|
||||
@Column()
|
||||
description: string
|
||||
|
||||
@Column()
|
||||
color: string
|
||||
|
||||
@Column({ nullable: true })
|
||||
iconSrc?: string
|
||||
|
||||
@Column({ nullable: true })
|
||||
schema?: string
|
||||
|
||||
@Column({ nullable: true })
|
||||
func?: string
|
||||
|
||||
@CreateDateColumn()
|
||||
createdDate: Date
|
||||
|
||||
@UpdateDateColumn()
|
||||
updatedDate: Date
|
||||
}
|
||||
|
|
@ -35,7 +35,9 @@ import {
|
|||
isSameOverrideConfig,
|
||||
replaceAllAPIKeys,
|
||||
isFlowValidForStream,
|
||||
isVectorStoreFaiss
|
||||
isVectorStoreFaiss,
|
||||
databaseEntities,
|
||||
getApiKey
|
||||
} from './utils'
|
||||
import { cloneDeep } from 'lodash'
|
||||
import { getDataSource } from './DataSource'
|
||||
|
|
@ -43,8 +45,9 @@ import { NodesPool } from './NodesPool'
|
|||
import { ChatFlow } from './entity/ChatFlow'
|
||||
import { ChatMessage } from './entity/ChatMessage'
|
||||
import { ChatflowPool } from './ChatflowPool'
|
||||
import { ICommonObject } from 'flowise-components'
|
||||
import { ICommonObject, INodeOptionsValue } from 'flowise-components'
|
||||
import { fork } from 'child_process'
|
||||
import { Tool } from './entity/Tool'
|
||||
|
||||
export class App {
|
||||
app: express.Application
|
||||
|
|
@ -90,7 +93,14 @@ export class App {
|
|||
const basicAuthMiddleware = basicAuth({
|
||||
users: { [username]: password }
|
||||
})
|
||||
const whitelistURLs = ['/api/v1/prediction/', '/api/v1/node-icon/', '/api/v1/chatflows-streaming']
|
||||
const whitelistURLs = [
|
||||
'/api/v1/verify/apikey/',
|
||||
'/api/v1/chatflows/apikey/',
|
||||
'/api/v1/public-chatflows',
|
||||
'/api/v1/prediction/',
|
||||
'/api/v1/node-icon/',
|
||||
'/api/v1/chatflows-streaming'
|
||||
]
|
||||
this.app.use((req, res, next) => {
|
||||
if (req.url.includes('/api/v1/')) {
|
||||
whitelistURLs.some((url) => req.url.includes(url)) ? next() : basicAuthMiddleware(req, res, next)
|
||||
|
|
@ -142,6 +152,29 @@ export class App {
|
|||
}
|
||||
})
|
||||
|
||||
// load async options
|
||||
this.app.post('/api/v1/node-load-method/:name', async (req: Request, res: Response) => {
|
||||
const nodeData: INodeData = req.body
|
||||
if (Object.prototype.hasOwnProperty.call(this.nodesPool.componentNodes, req.params.name)) {
|
||||
try {
|
||||
const nodeInstance = this.nodesPool.componentNodes[req.params.name]
|
||||
const methodName = nodeData.loadMethod || ''
|
||||
|
||||
const returnOptions: INodeOptionsValue[] = await nodeInstance.loadMethods![methodName]!.call(nodeInstance, nodeData, {
|
||||
appDataSource: this.AppDataSource,
|
||||
databaseEntities: databaseEntities
|
||||
})
|
||||
|
||||
return res.json(returnOptions)
|
||||
} catch (error) {
|
||||
return res.json([])
|
||||
}
|
||||
} else {
|
||||
res.status(404).send(`Node ${req.params.name} not found`)
|
||||
return
|
||||
}
|
||||
})
|
||||
|
||||
// ----------------------------------------
|
||||
// Chatflows
|
||||
// ----------------------------------------
|
||||
|
|
@ -152,6 +185,25 @@ export class App {
|
|||
return res.json(chatflows)
|
||||
})
|
||||
|
||||
// Get specific chatflow via api key
|
||||
this.app.get('/api/v1/chatflows/apikey/:apiKey', async (req: Request, res: Response) => {
|
||||
try {
|
||||
const apiKey = await getApiKey(req.params.apiKey)
|
||||
if (!apiKey) return res.status(401).send('Unauthorized')
|
||||
const chatflows = await this.AppDataSource.getRepository(ChatFlow)
|
||||
.createQueryBuilder('cf')
|
||||
.where('cf.apikeyid = :apikeyid', { apikeyid: apiKey.id })
|
||||
.orWhere('cf.apikeyid IS NULL')
|
||||
.orWhere('cf.apikeyid = ""')
|
||||
.orderBy('cf.name', 'ASC')
|
||||
.getMany()
|
||||
if (chatflows.length >= 1) return res.status(200).send(chatflows)
|
||||
return res.status(404).send('Chatflow not found')
|
||||
} catch (err: any) {
|
||||
return res.status(500).send(err?.message)
|
||||
}
|
||||
})
|
||||
|
||||
// Get specific chatflow via id
|
||||
this.app.get('/api/v1/chatflows/:id', async (req: Request, res: Response) => {
|
||||
const chatflow = await this.AppDataSource.getRepository(ChatFlow).findOneBy({
|
||||
|
|
@ -161,6 +213,16 @@ export class App {
|
|||
return res.status(404).send(`Chatflow ${req.params.id} not found`)
|
||||
})
|
||||
|
||||
// Get specific chatflow via id (PUBLIC endpoint, used when sharing chatbot link)
|
||||
this.app.get('/api/v1/public-chatflows/:id', async (req: Request, res: Response) => {
|
||||
const chatflow = await this.AppDataSource.getRepository(ChatFlow).findOneBy({
|
||||
id: req.params.id
|
||||
})
|
||||
if (chatflow && chatflow.isPublic) return res.json(chatflow)
|
||||
else if (chatflow && !chatflow.isPublic) return res.status(401).send(`Unauthorized`)
|
||||
return res.status(404).send(`Chatflow ${req.params.id} not found`)
|
||||
})
|
||||
|
||||
// Save chatflow
|
||||
this.app.post('/api/v1/chatflows', async (req: Request, res: Response) => {
|
||||
const body = req.body
|
||||
|
|
@ -257,6 +319,63 @@ export class App {
|
|||
return res.json(results)
|
||||
})
|
||||
|
||||
// ----------------------------------------
|
||||
// Tools
|
||||
// ----------------------------------------
|
||||
|
||||
// Get all tools
|
||||
this.app.get('/api/v1/tools', async (req: Request, res: Response) => {
|
||||
const tools = await this.AppDataSource.getRepository(Tool).find()
|
||||
return res.json(tools)
|
||||
})
|
||||
|
||||
// Get specific tool
|
||||
this.app.get('/api/v1/tools/:id', async (req: Request, res: Response) => {
|
||||
const tool = await this.AppDataSource.getRepository(Tool).findOneBy({
|
||||
id: req.params.id
|
||||
})
|
||||
return res.json(tool)
|
||||
})
|
||||
|
||||
// Add tool
|
||||
this.app.post('/api/v1/tools', async (req: Request, res: Response) => {
|
||||
const body = req.body
|
||||
const newTool = new Tool()
|
||||
Object.assign(newTool, body)
|
||||
|
||||
const tool = this.AppDataSource.getRepository(Tool).create(newTool)
|
||||
const results = await this.AppDataSource.getRepository(Tool).save(tool)
|
||||
|
||||
return res.json(results)
|
||||
})
|
||||
|
||||
// Update tool
|
||||
this.app.put('/api/v1/tools/:id', async (req: Request, res: Response) => {
|
||||
const tool = await this.AppDataSource.getRepository(Tool).findOneBy({
|
||||
id: req.params.id
|
||||
})
|
||||
|
||||
if (!tool) {
|
||||
res.status(404).send(`Tool ${req.params.id} not found`)
|
||||
return
|
||||
}
|
||||
|
||||
const body = req.body
|
||||
const updateTool = new Tool()
|
||||
Object.assign(updateTool, body)
|
||||
|
||||
this.AppDataSource.getRepository(Tool).merge(tool, updateTool)
|
||||
const result = await this.AppDataSource.getRepository(Tool).save(tool)
|
||||
|
||||
return res.json(result)
|
||||
})
|
||||
|
||||
// Delete tool
|
||||
this.app.delete('/api/v1/tools/:id', async (req: Request, res: Response) => {
|
||||
const results = await this.AppDataSource.getRepository(Tool).delete({ id: req.params.id })
|
||||
return res.json(results)
|
||||
})
|
||||
|
||||
// ----------------------------------------
|
||||
// Configuration
|
||||
// ----------------------------------------
|
||||
|
|
@ -343,12 +462,12 @@ export class App {
|
|||
// ----------------------------------------
|
||||
|
||||
// Get all chatflows for marketplaces
|
||||
this.app.get('/api/v1/marketplaces', async (req: Request, res: Response) => {
|
||||
const marketplaceDir = path.join(__dirname, '..', 'marketplaces')
|
||||
this.app.get('/api/v1/marketplaces/chatflows', async (req: Request, res: Response) => {
|
||||
const marketplaceDir = path.join(__dirname, '..', 'marketplaces', 'chatflows')
|
||||
const jsonsInDir = fs.readdirSync(marketplaceDir).filter((file) => path.extname(file) === '.json')
|
||||
const templates: any[] = []
|
||||
jsonsInDir.forEach((file, index) => {
|
||||
const filePath = path.join(__dirname, '..', 'marketplaces', file)
|
||||
const filePath = path.join(__dirname, '..', 'marketplaces', 'chatflows', file)
|
||||
const fileData = fs.readFileSync(filePath)
|
||||
const fileDataObj = JSON.parse(fileData.toString())
|
||||
const template = {
|
||||
|
|
@ -362,6 +481,25 @@ export class App {
|
|||
return res.json(templates)
|
||||
})
|
||||
|
||||
// Get all tools for marketplaces
|
||||
this.app.get('/api/v1/marketplaces/tools', async (req: Request, res: Response) => {
|
||||
const marketplaceDir = path.join(__dirname, '..', 'marketplaces', 'tools')
|
||||
const jsonsInDir = fs.readdirSync(marketplaceDir).filter((file) => path.extname(file) === '.json')
|
||||
const templates: any[] = []
|
||||
jsonsInDir.forEach((file, index) => {
|
||||
const filePath = path.join(__dirname, '..', 'marketplaces', 'tools', file)
|
||||
const fileData = fs.readFileSync(filePath)
|
||||
const fileDataObj = JSON.parse(fileData.toString())
|
||||
const template = {
|
||||
...fileDataObj,
|
||||
id: index,
|
||||
templateName: file.split('.json')[0]
|
||||
}
|
||||
templates.push(template)
|
||||
})
|
||||
return res.json(templates)
|
||||
})
|
||||
|
||||
// ----------------------------------------
|
||||
// API Keys
|
||||
// ----------------------------------------
|
||||
|
|
@ -390,6 +528,17 @@ export class App {
|
|||
return res.json(keys)
|
||||
})
|
||||
|
||||
// Verify api key
|
||||
this.app.get('/api/v1/verify/apikey/:apiKey', async (req: Request, res: Response) => {
|
||||
try {
|
||||
const apiKey = await getApiKey(req.params.apiKey)
|
||||
if (!apiKey) return res.status(401).send('Unauthorized')
|
||||
return res.status(200).send('OK')
|
||||
} catch (err: any) {
|
||||
return res.status(500).send(err?.message)
|
||||
}
|
||||
})
|
||||
|
||||
// ----------------------------------------
|
||||
// Serve UI static
|
||||
// ----------------------------------------
|
||||
|
|
@ -623,6 +772,7 @@ export class App {
|
|||
this.nodesPool.componentNodes,
|
||||
incomingInput.question,
|
||||
chatId,
|
||||
this.AppDataSource,
|
||||
incomingInput?.overrideConfig
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -15,10 +15,15 @@ import {
|
|||
IOverrideConfig
|
||||
} from '../Interface'
|
||||
import { cloneDeep, get, omit, merge } from 'lodash'
|
||||
import { ICommonObject, getInputVariables } from 'flowise-components'
|
||||
import { ICommonObject, getInputVariables, IDatabaseEntity } from 'flowise-components'
|
||||
import { scryptSync, randomBytes, timingSafeEqual } from 'crypto'
|
||||
import { ChatFlow } from '../entity/ChatFlow'
|
||||
import { ChatMessage } from '../entity/ChatMessage'
|
||||
import { Tool } from '../entity/Tool'
|
||||
import { DataSource } from 'typeorm'
|
||||
|
||||
const QUESTION_VAR_PREFIX = 'question'
|
||||
export const databaseEntities: IDatabaseEntity = { ChatFlow: ChatFlow, ChatMessage: ChatMessage, Tool: Tool }
|
||||
|
||||
/**
|
||||
* Returns the home folder path of the user if
|
||||
|
|
@ -183,6 +188,7 @@ export const buildLangchain = async (
|
|||
componentNodes: IComponentNodes,
|
||||
question: string,
|
||||
chatId: string,
|
||||
appDataSource: DataSource,
|
||||
overrideConfig?: ICommonObject
|
||||
) => {
|
||||
const flowNodes = cloneDeep(reactFlowNodes)
|
||||
|
|
@ -215,7 +221,11 @@ export const buildLangchain = async (
|
|||
if (overrideConfig) flowNodeData = replaceInputsWithConfig(flowNodeData, overrideConfig)
|
||||
const reactFlowNodeData: INodeData = resolveVariables(flowNodeData, flowNodes, question)
|
||||
|
||||
flowNodes[nodeIndex].data.instance = await newNodeInstance.init(reactFlowNodeData, question, { chatId })
|
||||
flowNodes[nodeIndex].data.instance = await newNodeInstance.init(reactFlowNodeData, question, {
|
||||
chatId,
|
||||
appDataSource,
|
||||
databaseEntities
|
||||
})
|
||||
} catch (e: any) {
|
||||
console.error(e)
|
||||
throw new Error(e)
|
||||
|
|
@ -453,7 +463,7 @@ export const isSameOverrideConfig = (
|
|||
* @returns {string}
|
||||
*/
|
||||
export const getAPIKeyPath = (): string => {
|
||||
return path.join(__dirname, '..', '..', 'api.json')
|
||||
return process.env.APIKEY_PATH ? path.join(process.env.APIKEY_PATH, 'api.json') : path.join(__dirname, '..', '..', 'api.json')
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -537,6 +547,18 @@ export const addAPIKey = async (keyName: string): Promise<ICommonObject[]> => {
|
|||
return content
|
||||
}
|
||||
|
||||
/**
|
||||
* Get API Key details
|
||||
* @param {string} apiKey
|
||||
* @returns {Promise<ICommonObject[]>}
|
||||
*/
|
||||
export const getApiKey = async (apiKey: string) => {
|
||||
const existingAPIKeys = await getAPIKeys()
|
||||
const keyIndex = existingAPIKeys.findIndex((key) => key.apiKey === apiKey)
|
||||
if (keyIndex < 0) return undefined
|
||||
return existingAPIKeys[keyIndex]
|
||||
}
|
||||
|
||||
/**
|
||||
* Update existing API key
|
||||
* @param {string} keyIdToUpdate
|
||||
|
|
|
|||
|
|
@ -0,0 +1,16 @@
|
|||
module.exports = {
|
||||
webpack: {
|
||||
configure: {
|
||||
module: {
|
||||
rules: [
|
||||
{
|
||||
test: /\.m?js$/,
|
||||
resolve: {
|
||||
fullySpecified: false
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"name": "flowise-ui",
|
||||
"version": "1.2.11",
|
||||
"version": "1.2.13",
|
||||
"license": "SEE LICENSE IN LICENSE.md",
|
||||
"homepage": "https://flowiseai.com",
|
||||
"author": {
|
||||
|
|
@ -13,8 +13,12 @@
|
|||
"@emotion/styled": "^11.10.6",
|
||||
"@mui/icons-material": "^5.0.3",
|
||||
"@mui/material": "^5.11.12",
|
||||
"@mui/x-data-grid": "^6.8.0",
|
||||
"@tabler/icons": "^1.39.1",
|
||||
"clsx": "^1.1.1",
|
||||
"flowise-embed": "*",
|
||||
"flowise-embed-react": "*",
|
||||
"flowise-react-json-view": "*",
|
||||
"formik": "^2.2.6",
|
||||
"framer-motion": "^4.1.13",
|
||||
"history": "^5.0.0",
|
||||
|
|
@ -26,10 +30,10 @@
|
|||
"prop-types": "^15.7.2",
|
||||
"react": "^18.2.0",
|
||||
"react-code-blocks": "^0.0.9-0",
|
||||
"react-color": "^2.19.3",
|
||||
"react-datepicker": "^4.8.0",
|
||||
"react-device-detect": "^1.17.0",
|
||||
"react-dom": "^18.2.0",
|
||||
"react-json-view": "^1.21.3",
|
||||
"react-markdown": "^8.0.6",
|
||||
"react-perfect-scrollbar": "^1.5.8",
|
||||
"react-redux": "^8.0.5",
|
||||
|
|
@ -46,11 +50,11 @@
|
|||
"yup": "^0.32.9"
|
||||
},
|
||||
"scripts": {
|
||||
"start": "react-scripts start",
|
||||
"dev": "react-scripts start",
|
||||
"build": "react-scripts build",
|
||||
"test": "react-scripts test",
|
||||
"eject": "react-scripts eject"
|
||||
"start": "craco start",
|
||||
"dev": "craco start",
|
||||
"build": "craco build",
|
||||
"test": "craco test",
|
||||
"eject": "craco eject"
|
||||
},
|
||||
"babel": {
|
||||
"presets": [
|
||||
|
|
@ -71,6 +75,7 @@
|
|||
},
|
||||
"devDependencies": {
|
||||
"@babel/eslint-parser": "^7.15.8",
|
||||
"@craco/craco": "^7.1.0",
|
||||
"@testing-library/jest-dom": "^5.11.10",
|
||||
"@testing-library/react": "^14.0.0",
|
||||
"@testing-library/user-event": "^12.8.3",
|
||||
|
|
|
|||
|
|
@ -1,13 +1,13 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<title>Flowise - LangchainJS UI</title>
|
||||
<title>Flowise - Low-code LLM apps builder</title>
|
||||
<link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
|
||||
<!-- Meta Tags-->
|
||||
<meta charset="utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<meta name="theme-color" content="#2296f3" />
|
||||
<meta name="title" content="Flowise - LangchainJS UI" />
|
||||
<meta name="title" content="Flowise - Low-code LLM apps builder" />
|
||||
<meta name="description" content="Flowise helps you to better integrate Web3 with existing Web2 applications" />
|
||||
<meta name="keywords" content="react, material-ui, reactjs, reactjs, workflow automation, web3, web2, blockchain" />
|
||||
<meta name="author" content="CodedThemes" />
|
||||
|
|
@ -17,13 +17,13 @@
|
|||
<meta property="og:url" content="https://flowiseai.com/" />
|
||||
<meta property="og:site_name" content="flowiseai.com" />
|
||||
<meta property="article:publisher" content="https://www.facebook.com/codedthemes" />
|
||||
<meta property="og:title" content="Flowise - LangchainJS UI" />
|
||||
<meta property="og:title" content="Flowise - Low-code LLM apps builder" />
|
||||
<meta property="og:description" content="Flowise helps you to better build LLM flows using Langchain in simple GUI" />
|
||||
<meta property="og:image" content="https://flowiseai.com/og-image/og-facebook.png" />
|
||||
<!-- Twitter -->
|
||||
<meta property="twitter:card" content="summary_large_image" />
|
||||
<meta property="twitter:url" content="https://flowiseai.com" />
|
||||
<meta property="twitter:title" content="Flowise - LangchainJS UI" />
|
||||
<meta property="twitter:title" content="Flowise - Low-code LLM apps builder" />
|
||||
<meta property="twitter:description" content="Flowise helps you to better build LLM flows using Langchain in simple GUI" />
|
||||
<meta property="twitter:image" content="https://flowiseai.com/og-image/og-twitter.png" />
|
||||
<meta name="twitter:creator" content="@codedthemes" />
|
||||
|
|
|
|||
|
|
@ -4,6 +4,8 @@ const getAllChatflows = () => client.get('/chatflows')
|
|||
|
||||
const getSpecificChatflow = (id) => client.get(`/chatflows/${id}`)
|
||||
|
||||
const getSpecificChatflowFromPublicEndpoint = (id) => client.get(`/public-chatflows/${id}`)
|
||||
|
||||
const createNewChatflow = (body) => client.post(`/chatflows`, body)
|
||||
|
||||
const updateChatflow = (id, body) => client.put(`/chatflows/${id}`, body)
|
||||
|
|
@ -15,6 +17,7 @@ const getIsChatflowStreaming = (id) => client.get(`/chatflows-streaming/${id}`)
|
|||
export default {
|
||||
getAllChatflows,
|
||||
getSpecificChatflow,
|
||||
getSpecificChatflowFromPublicEndpoint,
|
||||
createNewChatflow,
|
||||
updateChatflow,
|
||||
deleteChatflow,
|
||||
|
|
|
|||
|
|
@ -1,7 +1,9 @@
|
|||
import client from './client'
|
||||
|
||||
const getAllMarketplaces = () => client.get('/marketplaces')
|
||||
const getAllChatflowsMarketplaces = () => client.get('/marketplaces/chatflows')
|
||||
const getAllToolsMarketplaces = () => client.get('/marketplaces/tools')
|
||||
|
||||
export default {
|
||||
getAllMarketplaces
|
||||
getAllChatflowsMarketplaces,
|
||||
getAllToolsMarketplaces
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,19 @@
|
|||
import client from './client'
|
||||
|
||||
const getAllTools = () => client.get('/tools')
|
||||
|
||||
const getSpecificTool = (id) => client.get(`/tools/${id}`)
|
||||
|
||||
const createNewTool = (body) => client.post(`/tools`, body)
|
||||
|
||||
const updateTool = (id, body) => client.put(`/tools/${id}`, body)
|
||||
|
||||
const deleteTool = (id) => client.delete(`/tools/${id}`)
|
||||
|
||||
export default {
|
||||
getAllTools,
|
||||
getSpecificTool,
|
||||
createNewTool,
|
||||
updateTool,
|
||||
deleteTool
|
||||
}
|
||||
|
After Width: | Height: | Size: 17 KiB |
|
After Width: | Height: | Size: 7.8 KiB |
|
|
@ -1,8 +1,8 @@
|
|||
// assets
|
||||
import { IconHierarchy, IconBuildingStore, IconKey } from '@tabler/icons'
|
||||
import { IconHierarchy, IconBuildingStore, IconKey, IconTool } from '@tabler/icons'
|
||||
|
||||
// constant
|
||||
const icons = { IconHierarchy, IconBuildingStore, IconKey }
|
||||
const icons = { IconHierarchy, IconBuildingStore, IconKey, IconTool }
|
||||
|
||||
// ==============================|| DASHBOARD MENU ITEMS ||============================== //
|
||||
|
||||
|
|
@ -27,6 +27,14 @@ const dashboard = {
|
|||
icon: icons.IconBuildingStore,
|
||||
breadcrumbs: true
|
||||
},
|
||||
{
|
||||
id: 'tools',
|
||||
title: 'Tools',
|
||||
type: 'item',
|
||||
url: '/tools',
|
||||
icon: icons.IconTool,
|
||||
breadcrumbs: true
|
||||
},
|
||||
{
|
||||
id: 'apikey',
|
||||
title: 'API Keys',
|
||||
|
|
|
|||
|
|
@ -0,0 +1,23 @@
|
|||
import { lazy } from 'react'
|
||||
|
||||
// project imports
|
||||
import Loadable from 'ui-component/loading/Loadable'
|
||||
import MinimalLayout from 'layout/MinimalLayout'
|
||||
|
||||
// canvas routing
|
||||
const ChatbotFull = Loadable(lazy(() => import('views/chatbot')))
|
||||
|
||||
// ==============================|| CANVAS ROUTING ||============================== //
|
||||
|
||||
const ChatbotRoutes = {
|
||||
path: '/',
|
||||
element: <MinimalLayout />,
|
||||
children: [
|
||||
{
|
||||
path: '/chatbot/:id',
|
||||
element: <ChatbotFull />
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
export default ChatbotRoutes
|
||||
|
|
@ -13,6 +13,9 @@ const Marketplaces = Loadable(lazy(() => import('views/marketplaces')))
|
|||
// apikey routing
|
||||
const APIKey = Loadable(lazy(() => import('views/apikey')))
|
||||
|
||||
// apikey routing
|
||||
const Tools = Loadable(lazy(() => import('views/tools')))
|
||||
|
||||
// ==============================|| MAIN ROUTING ||============================== //
|
||||
|
||||
const MainRoutes = {
|
||||
|
|
@ -34,6 +37,10 @@ const MainRoutes = {
|
|||
{
|
||||
path: '/apikey',
|
||||
element: <APIKey />
|
||||
},
|
||||
{
|
||||
path: '/tools',
|
||||
element: <Tools />
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
|
|||
|
|
@ -3,10 +3,11 @@ import { useRoutes } from 'react-router-dom'
|
|||
// routes
|
||||
import MainRoutes from './MainRoutes'
|
||||
import CanvasRoutes from './CanvasRoutes'
|
||||
import ChatbotRoutes from './ChatbotRoutes'
|
||||
import config from 'config'
|
||||
|
||||
// ==============================|| ROUTING RENDER ||============================== //
|
||||
|
||||
export default function ThemeRoutes() {
|
||||
return useRoutes([MainRoutes, CanvasRoutes], config.basename)
|
||||
return useRoutes([MainRoutes, CanvasRoutes, ChatbotRoutes], config.basename)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -136,6 +136,9 @@ export default function componentStyleOverrides(theme) {
|
|||
'&::placeholder': {
|
||||
color: theme.darkTextSecondary,
|
||||
fontSize: '0.875rem'
|
||||
},
|
||||
'&.Mui-disabled': {
|
||||
WebkitTextFillColor: theme?.customization?.isDarkMode ? theme.colors?.grey500 : theme.darkTextSecondary
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
import PropTypes from 'prop-types'
|
||||
|
||||
// material-ui
|
||||
import { styled, useTheme } from '@mui/material/styles'
|
||||
import { Box, Grid, Chip, Typography } from '@mui/material'
|
||||
import { styled } from '@mui/material/styles'
|
||||
import { Box, Grid, Typography } from '@mui/material'
|
||||
|
||||
// project imports
|
||||
import MainCard from 'ui-component/cards/MainCard'
|
||||
|
|
@ -28,19 +28,6 @@ const CardWrapper = styled(MainCard)(({ theme }) => ({
|
|||
// ===========================|| CONTRACT CARD ||=========================== //
|
||||
|
||||
const ItemCard = ({ isLoading, data, images, onClick }) => {
|
||||
const theme = useTheme()
|
||||
|
||||
const chipSX = {
|
||||
height: 24,
|
||||
padding: '0 6px'
|
||||
}
|
||||
|
||||
const activeChatflowSX = {
|
||||
...chipSX,
|
||||
color: 'white',
|
||||
backgroundColor: theme.palette.success.dark
|
||||
}
|
||||
|
||||
return (
|
||||
<>
|
||||
{isLoading ? (
|
||||
|
|
@ -49,11 +36,42 @@ const ItemCard = ({ isLoading, data, images, onClick }) => {
|
|||
<CardWrapper border={false} content={false} onClick={onClick}>
|
||||
<Box sx={{ p: 2.25 }}>
|
||||
<Grid container direction='column'>
|
||||
<div>
|
||||
<div
|
||||
style={{
|
||||
display: 'flex',
|
||||
flexDirection: 'row',
|
||||
alignItems: 'center'
|
||||
}}
|
||||
>
|
||||
{data.iconSrc && (
|
||||
<div
|
||||
style={{
|
||||
width: 35,
|
||||
height: 35,
|
||||
marginRight: 10,
|
||||
borderRadius: '50%',
|
||||
background: `url(${data.iconSrc})`,
|
||||
backgroundSize: 'contain',
|
||||
backgroundRepeat: 'no-repeat',
|
||||
backgroundPosition: 'center center'
|
||||
}}
|
||||
></div>
|
||||
)}
|
||||
{!data.iconSrc && data.color && (
|
||||
<div
|
||||
style={{
|
||||
width: 35,
|
||||
height: 35,
|
||||
marginRight: 10,
|
||||
borderRadius: '50%',
|
||||
background: data.color
|
||||
}}
|
||||
></div>
|
||||
)}
|
||||
<Typography
|
||||
sx={{ fontSize: '1.5rem', fontWeight: 500, overflowWrap: 'break-word', whiteSpace: 'pre-line' }}
|
||||
>
|
||||
{data.name}
|
||||
{data.templateName || data.name}
|
||||
</Typography>
|
||||
</div>
|
||||
{data.description && (
|
||||
|
|
@ -61,13 +79,6 @@ const ItemCard = ({ isLoading, data, images, onClick }) => {
|
|||
{data.description}
|
||||
</span>
|
||||
)}
|
||||
<Grid sx={{ mt: 1, mb: 1 }} container direction='row'>
|
||||
{data.deployed && (
|
||||
<Grid item>
|
||||
<Chip label='Deployed' sx={activeChatflowSX} />
|
||||
</Grid>
|
||||
)}
|
||||
</Grid>
|
||||
{images && (
|
||||
<div
|
||||
style={{
|
||||
|
|
|
|||
|
|
@ -1,256 +0,0 @@
|
|||
import { createPortal } from 'react-dom'
|
||||
import { useState, useEffect } from 'react'
|
||||
import { useSelector } from 'react-redux'
|
||||
import PropTypes from 'prop-types'
|
||||
import {
|
||||
Button,
|
||||
Dialog,
|
||||
DialogActions,
|
||||
DialogContent,
|
||||
Box,
|
||||
List,
|
||||
ListItemButton,
|
||||
ListItem,
|
||||
ListItemAvatar,
|
||||
ListItemText,
|
||||
Typography,
|
||||
Stack
|
||||
} from '@mui/material'
|
||||
import { useTheme } from '@mui/material/styles'
|
||||
import PerfectScrollbar from 'react-perfect-scrollbar'
|
||||
import { StyledButton } from 'ui-component/button/StyledButton'
|
||||
import { DarkCodeEditor } from 'ui-component/editor/DarkCodeEditor'
|
||||
import { LightCodeEditor } from 'ui-component/editor/LightCodeEditor'
|
||||
|
||||
import './EditPromptValuesDialog.css'
|
||||
import { baseURL } from 'store/constant'
|
||||
|
||||
const EditPromptValuesDialog = ({ show, dialogProps, onCancel, onConfirm }) => {
|
||||
const portalElement = document.getElementById('portal')
|
||||
|
||||
const theme = useTheme()
|
||||
const customization = useSelector((state) => state.customization)
|
||||
const languageType = 'json'
|
||||
|
||||
const [inputValue, setInputValue] = useState('')
|
||||
const [inputParam, setInputParam] = useState(null)
|
||||
const [textCursorPosition, setTextCursorPosition] = useState({})
|
||||
|
||||
useEffect(() => {
|
||||
if (dialogProps.value) setInputValue(dialogProps.value)
|
||||
if (dialogProps.inputParam) setInputParam(dialogProps.inputParam)
|
||||
|
||||
return () => {
|
||||
setInputValue('')
|
||||
setInputParam(null)
|
||||
setTextCursorPosition({})
|
||||
}
|
||||
}, [dialogProps])
|
||||
|
||||
const onMouseUp = (e) => {
|
||||
if (e.target && e.target.selectionEnd && e.target.value) {
|
||||
const cursorPosition = e.target.selectionEnd
|
||||
const textBeforeCursorPosition = e.target.value.substring(0, cursorPosition)
|
||||
const textAfterCursorPosition = e.target.value.substring(cursorPosition, e.target.value.length)
|
||||
const body = {
|
||||
textBeforeCursorPosition,
|
||||
textAfterCursorPosition
|
||||
}
|
||||
setTextCursorPosition(body)
|
||||
} else {
|
||||
setTextCursorPosition({})
|
||||
}
|
||||
}
|
||||
|
||||
const onSelectOutputResponseClick = (node, isUserQuestion = false) => {
|
||||
let variablePath = isUserQuestion ? `question` : `${node.id}.data.instance`
|
||||
if (textCursorPosition) {
|
||||
let newInput = ''
|
||||
if (textCursorPosition.textBeforeCursorPosition === undefined && textCursorPosition.textAfterCursorPosition === undefined)
|
||||
newInput = `${inputValue}${`{{${variablePath}}}`}`
|
||||
else newInput = `${textCursorPosition.textBeforeCursorPosition}{{${variablePath}}}${textCursorPosition.textAfterCursorPosition}`
|
||||
setInputValue(newInput)
|
||||
}
|
||||
}
|
||||
|
||||
const component = show ? (
|
||||
<Dialog open={show} fullWidth maxWidth='md' aria-labelledby='alert-dialog-title' aria-describedby='alert-dialog-description'>
|
||||
<DialogContent>
|
||||
<div style={{ display: 'flex', flexDirection: 'row' }}>
|
||||
{inputParam && inputParam.type === 'string' && (
|
||||
<div style={{ flex: 70 }}>
|
||||
<Typography sx={{ mb: 2, ml: 1 }} variant='h4'>
|
||||
{inputParam.label}
|
||||
</Typography>
|
||||
<PerfectScrollbar
|
||||
style={{
|
||||
border: '1px solid',
|
||||
borderColor: theme.palette.grey['500'],
|
||||
borderRadius: '12px',
|
||||
height: '100%',
|
||||
maxHeight: 'calc(100vh - 220px)',
|
||||
overflowX: 'hidden',
|
||||
backgroundColor: 'white'
|
||||
}}
|
||||
>
|
||||
{customization.isDarkMode ? (
|
||||
<DarkCodeEditor
|
||||
disabled={dialogProps.disabled}
|
||||
value={inputValue}
|
||||
onValueChange={(code) => setInputValue(code)}
|
||||
placeholder={inputParam.placeholder}
|
||||
type={languageType}
|
||||
onMouseUp={(e) => onMouseUp(e)}
|
||||
onBlur={(e) => onMouseUp(e)}
|
||||
style={{
|
||||
fontSize: '0.875rem',
|
||||
minHeight: 'calc(100vh - 220px)',
|
||||
width: '100%'
|
||||
}}
|
||||
/>
|
||||
) : (
|
||||
<LightCodeEditor
|
||||
disabled={dialogProps.disabled}
|
||||
value={inputValue}
|
||||
onValueChange={(code) => setInputValue(code)}
|
||||
placeholder={inputParam.placeholder}
|
||||
type={languageType}
|
||||
onMouseUp={(e) => onMouseUp(e)}
|
||||
onBlur={(e) => onMouseUp(e)}
|
||||
style={{
|
||||
fontSize: '0.875rem',
|
||||
minHeight: 'calc(100vh - 220px)',
|
||||
width: '100%'
|
||||
}}
|
||||
/>
|
||||
)}
|
||||
</PerfectScrollbar>
|
||||
</div>
|
||||
)}
|
||||
{!dialogProps.disabled && inputParam && inputParam.acceptVariable && (
|
||||
<div style={{ flex: 30 }}>
|
||||
<Stack flexDirection='row' sx={{ mb: 1, ml: 2 }}>
|
||||
<Typography variant='h4'>Select Variable</Typography>
|
||||
</Stack>
|
||||
<PerfectScrollbar style={{ height: '100%', maxHeight: 'calc(100vh - 220px)', overflowX: 'hidden' }}>
|
||||
<Box sx={{ pl: 2, pr: 2 }}>
|
||||
<List>
|
||||
<ListItemButton
|
||||
sx={{
|
||||
p: 0,
|
||||
borderRadius: `${customization.borderRadius}px`,
|
||||
boxShadow: '0 2px 14px 0 rgb(32 40 45 / 8%)',
|
||||
mb: 1
|
||||
}}
|
||||
disabled={dialogProps.disabled}
|
||||
onClick={() => onSelectOutputResponseClick(null, true)}
|
||||
>
|
||||
<ListItem alignItems='center'>
|
||||
<ListItemAvatar>
|
||||
<div
|
||||
style={{
|
||||
width: 50,
|
||||
height: 50,
|
||||
borderRadius: '50%',
|
||||
backgroundColor: 'white'
|
||||
}}
|
||||
>
|
||||
<img
|
||||
style={{
|
||||
width: '100%',
|
||||
height: '100%',
|
||||
padding: 10,
|
||||
objectFit: 'contain'
|
||||
}}
|
||||
alt='AI'
|
||||
src='https://raw.githubusercontent.com/zahidkhawaja/langchain-chat-nextjs/main/public/parroticon.png'
|
||||
/>
|
||||
</div>
|
||||
</ListItemAvatar>
|
||||
<ListItemText
|
||||
sx={{ ml: 1 }}
|
||||
primary='question'
|
||||
secondary={`User's question from chatbox`}
|
||||
/>
|
||||
</ListItem>
|
||||
</ListItemButton>
|
||||
{dialogProps.availableNodesForVariable &&
|
||||
dialogProps.availableNodesForVariable.length > 0 &&
|
||||
dialogProps.availableNodesForVariable.map((node, index) => {
|
||||
const selectedOutputAnchor = node.data.outputAnchors[0].options.find(
|
||||
(ancr) => ancr.name === node.data.outputs['output']
|
||||
)
|
||||
return (
|
||||
<ListItemButton
|
||||
key={index}
|
||||
sx={{
|
||||
p: 0,
|
||||
borderRadius: `${customization.borderRadius}px`,
|
||||
boxShadow: '0 2px 14px 0 rgb(32 40 45 / 8%)',
|
||||
mb: 1
|
||||
}}
|
||||
disabled={dialogProps.disabled}
|
||||
onClick={() => onSelectOutputResponseClick(node)}
|
||||
>
|
||||
<ListItem alignItems='center'>
|
||||
<ListItemAvatar>
|
||||
<div
|
||||
style={{
|
||||
width: 50,
|
||||
height: 50,
|
||||
borderRadius: '50%',
|
||||
backgroundColor: 'white'
|
||||
}}
|
||||
>
|
||||
<img
|
||||
style={{
|
||||
width: '100%',
|
||||
height: '100%',
|
||||
padding: 10,
|
||||
objectFit: 'contain'
|
||||
}}
|
||||
alt={node.data.name}
|
||||
src={`${baseURL}/api/v1/node-icon/${node.data.name}`}
|
||||
/>
|
||||
</div>
|
||||
</ListItemAvatar>
|
||||
<ListItemText
|
||||
sx={{ ml: 1 }}
|
||||
primary={
|
||||
node.data.inputs.chainName ? node.data.inputs.chainName : node.data.id
|
||||
}
|
||||
secondary={`${selectedOutputAnchor?.label ?? 'output'} from ${
|
||||
node.data.label
|
||||
}`}
|
||||
/>
|
||||
</ListItem>
|
||||
</ListItemButton>
|
||||
)
|
||||
})}
|
||||
</List>
|
||||
</Box>
|
||||
</PerfectScrollbar>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
</DialogContent>
|
||||
<DialogActions>
|
||||
<Button onClick={onCancel}>{dialogProps.cancelButtonName}</Button>
|
||||
<StyledButton disabled={dialogProps.disabled} variant='contained' onClick={() => onConfirm(inputValue, inputParam.name)}>
|
||||
{dialogProps.confirmButtonName}
|
||||
</StyledButton>
|
||||
</DialogActions>
|
||||
</Dialog>
|
||||
) : null
|
||||
|
||||
return createPortal(component, portalElement)
|
||||
}
|
||||
|
||||
EditPromptValuesDialog.propTypes = {
|
||||
show: PropTypes.bool,
|
||||
dialogProps: PropTypes.object,
|
||||
onCancel: PropTypes.func,
|
||||
onConfirm: PropTypes.func
|
||||
}
|
||||
|
||||
export default EditPromptValuesDialog
|
||||