Add BabyAGI node
This commit is contained in:
parent
88b60ab17a
commit
df50c0499d
|
|
@ -0,0 +1,376 @@
|
|||
import { INode, INodeData, INodeParams } from '../../../src/Interface'
|
||||
import { Configuration, CreateChatCompletionRequest, CreateCompletionRequest, OpenAIApi } from 'openai'
|
||||
import { PineconeClient } from '@pinecone-database/pinecone'
|
||||
import { CreateIndexRequest } from '@pinecone-database/pinecone/dist/pinecone-generated-ts-fetch'
|
||||
import { VectorOperationsApi } from '@pinecone-database/pinecone/dist/pinecone-generated-ts-fetch'
|
||||
import { v4 as uuidv4 } from 'uuid'
|
||||
|
||||
interface Task {
|
||||
id: string
|
||||
name: string
|
||||
priority: number // 1 is highest priority
|
||||
}
|
||||
|
||||
class BabyAGI_Agents implements INode {
|
||||
label: string
|
||||
name: string
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'BabyAGI'
|
||||
this.name = 'babyAGI'
|
||||
this.type = 'BabyAGI'
|
||||
this.category = 'Agents'
|
||||
this.icon = 'babyagi.svg'
|
||||
this.description = 'Task Driven Autonomous Agent which creates new task and reprioritizes task list based on objective'
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Task Loop',
|
||||
name: 'taskLoop',
|
||||
type: 'number',
|
||||
default: 3
|
||||
},
|
||||
{
|
||||
label: 'OpenAI Api Key',
|
||||
name: 'openAIApiKey',
|
||||
type: 'password'
|
||||
},
|
||||
{
|
||||
label: 'Pinecone Api Key',
|
||||
name: 'pineconeApiKey',
|
||||
type: 'password'
|
||||
},
|
||||
{
|
||||
label: 'Pinecone Environment',
|
||||
name: 'pineconeEnv',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Pinecone Index',
|
||||
name: 'pineconeIndex',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Model Name',
|
||||
name: 'modelName',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
label: 'gpt-4',
|
||||
name: 'gpt-4'
|
||||
},
|
||||
{
|
||||
label: 'gpt-4-0314',
|
||||
name: 'gpt-4-0314'
|
||||
},
|
||||
{
|
||||
label: 'gpt-4-32k-0314',
|
||||
name: 'gpt-4-32k-0314'
|
||||
},
|
||||
{
|
||||
label: 'gpt-3.5-turbo',
|
||||
name: 'gpt-3.5-turbo'
|
||||
},
|
||||
{
|
||||
label: 'gpt-3.5-turbo-0301',
|
||||
name: 'gpt-3.5-turbo-0301'
|
||||
}
|
||||
],
|
||||
default: 'gpt-3.5-turbo',
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async getBaseClasses(): Promise<string[]> {
|
||||
return ['BabyAGI']
|
||||
}
|
||||
|
||||
async init(): Promise<any> {
|
||||
return null
|
||||
}
|
||||
|
||||
async run(nodeData: INodeData, input: string): Promise<string> {
|
||||
const openAIApiKey = nodeData.inputs?.openAIApiKey as string
|
||||
const pineconeApiKey = nodeData.inputs?.pineconeApiKey as string
|
||||
const pineconeEnv = nodeData.inputs?.pineconeEnv as string
|
||||
const index = nodeData.inputs?.pineconeIndex as string
|
||||
const modelName = nodeData.inputs?.modelName as string
|
||||
const taskLoop = nodeData.inputs?.taskLoop as string
|
||||
const objective = input
|
||||
|
||||
const configuration = new Configuration({
|
||||
apiKey: openAIApiKey
|
||||
})
|
||||
const openai = new OpenAIApi(configuration)
|
||||
|
||||
const pinecone = new PineconeClient()
|
||||
await pinecone.init({
|
||||
apiKey: pineconeApiKey,
|
||||
environment: pineconeEnv
|
||||
})
|
||||
|
||||
const dimension = 1536
|
||||
const metric = 'cosine'
|
||||
const podType = 'p1'
|
||||
|
||||
const indexList = await pinecone.listIndexes()
|
||||
if (!indexList.includes(index)) {
|
||||
const createIndexOptions: CreateIndexRequest = {
|
||||
createRequest: {
|
||||
name: index,
|
||||
dimension,
|
||||
metric,
|
||||
podType
|
||||
}
|
||||
}
|
||||
await pinecone.createIndex(createIndexOptions)
|
||||
}
|
||||
|
||||
let vectorIndex: VectorOperationsApi = pinecone.Index(index)
|
||||
|
||||
let taskList: Task[] = []
|
||||
let embeddingList = new Map<string, number[]>()
|
||||
|
||||
taskList = [
|
||||
{
|
||||
id: uuidv4(),
|
||||
name: 'Develop a task list',
|
||||
priority: 1
|
||||
}
|
||||
]
|
||||
|
||||
return await mainLoop(openai, pinecone, index, embeddingList, vectorIndex, taskList, objective, modelName, taskLoop)
|
||||
}
|
||||
}
|
||||
|
||||
export const getADAEmbedding = async (openai: OpenAIApi, text: string, embeddingList: Map<string, number[]>): Promise<number[]> => {
|
||||
//console.log('\nGetting ADA embedding for: ', text)
|
||||
|
||||
if (embeddingList.has(text)) {
|
||||
//console.log('Embedding already exists for: ', text)
|
||||
const numbers = embeddingList.get(text)
|
||||
return numbers ?? []
|
||||
}
|
||||
|
||||
const embedding = (
|
||||
await openai.createEmbedding({
|
||||
input: [text],
|
||||
model: 'text-embedding-ada-002'
|
||||
})
|
||||
).data?.data[0].embedding
|
||||
|
||||
embeddingList.set(text, embedding)
|
||||
|
||||
return embedding
|
||||
}
|
||||
|
||||
export const openAICall = async (openai: OpenAIApi, prompt: string, gptVersion: string, temperature = 0.5, max_tokens = 100) => {
|
||||
if (gptVersion === 'gpt-3.5-turbo' || gptVersion === 'gpt-4' || gptVersion === 'gpt-4-32k') {
|
||||
// Chat completion
|
||||
const options: CreateChatCompletionRequest = {
|
||||
model: gptVersion,
|
||||
messages: [{ role: 'user', content: prompt }],
|
||||
temperature,
|
||||
max_tokens,
|
||||
n: 1
|
||||
}
|
||||
const data = (await openai.createChatCompletion(options)).data
|
||||
|
||||
return data?.choices[0]?.message?.content.trim() ?? ''
|
||||
} else {
|
||||
// Prompt completion
|
||||
const options: CreateCompletionRequest = {
|
||||
model: gptVersion,
|
||||
prompt,
|
||||
temperature,
|
||||
max_tokens,
|
||||
top_p: 1,
|
||||
frequency_penalty: 0,
|
||||
presence_penalty: 0
|
||||
}
|
||||
const data = (await openai.createCompletion(options)).data
|
||||
|
||||
return data?.choices[0]?.text?.trim() ?? ''
|
||||
}
|
||||
}
|
||||
|
||||
export const taskCreationAgent = async (
|
||||
openai: OpenAIApi,
|
||||
taskList: Task[],
|
||||
objective: string,
|
||||
result: string,
|
||||
taskDescription: string,
|
||||
gptVersion = 'gpt-3.5-turbo'
|
||||
): Promise<Task[]> => {
|
||||
const prompt = `You are an task creation AI that uses the result of an execution agent to create new tasks with the following objective: ${objective}, The last completed task has the result: ${result}. This result was based on this task description: ${taskDescription}. These are incomplete tasks: ${taskList.join(
|
||||
', '
|
||||
)}. Based on the result, create new tasks to be completed by the AI system that do not overlap with incomplete tasks. Return the tasks as an array.`
|
||||
const response = await openAICall(openai, prompt, gptVersion)
|
||||
const newTaskNames = response.split('\n')
|
||||
|
||||
return newTaskNames.map((name) => ({
|
||||
id: uuidv4(),
|
||||
name,
|
||||
priority: taskList.length + 1
|
||||
}))
|
||||
}
|
||||
|
||||
export const prioritizationAgent = async (
|
||||
openai: OpenAIApi,
|
||||
taskList: Task[],
|
||||
taskPriority: number,
|
||||
objective: string,
|
||||
gptVersion = 'gpt-3.5-turbo'
|
||||
): Promise<Task[]> => {
|
||||
const taskNames = taskList.map((t) => t.name)
|
||||
const startPriority = taskPriority + 1
|
||||
|
||||
const prompt = `You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing the following tasks: ${taskNames}. Consider the ultimate objective of your team: ${objective}. Do not remove any tasks. Return the result as a list, like:
|
||||
#. First task
|
||||
#. Second task
|
||||
Start the task list with number ${startPriority}.`
|
||||
const response = await openAICall(openai, prompt, gptVersion)
|
||||
const newTasks = response.split('\n')
|
||||
|
||||
// Parse and add new tasks
|
||||
return (
|
||||
newTasks
|
||||
.map((taskString) => {
|
||||
const taskParts = taskString.trim().split('.', 2)
|
||||
|
||||
if (taskParts.length === 2) {
|
||||
const id = uuidv4()
|
||||
const name = taskParts[1].trim()
|
||||
const priority = parseInt(taskParts[0])
|
||||
return {
|
||||
id,
|
||||
name,
|
||||
priority
|
||||
} as Task
|
||||
}
|
||||
})
|
||||
// Remove lines that don't have a task
|
||||
.filter((t) => t !== undefined)
|
||||
// Sort by priority
|
||||
.sort((a, b) => a!.priority - b!.priority) as Task[]
|
||||
)
|
||||
}
|
||||
|
||||
export const contextAgent = async (
|
||||
openai: OpenAIApi,
|
||||
pinecone: PineconeClient,
|
||||
indexName: string,
|
||||
embeddingList: Map<string, number[]>,
|
||||
objective: string,
|
||||
topK: number
|
||||
) => {
|
||||
const index = pinecone.Index(indexName)
|
||||
const queryEmbedding = await getADAEmbedding(openai, objective, embeddingList)
|
||||
|
||||
const results = await index.query({
|
||||
queryRequest: {
|
||||
vector: queryEmbedding,
|
||||
includeMetadata: true,
|
||||
topK
|
||||
}
|
||||
})
|
||||
const sortedResults = results.matches?.sort((a, b) => (b?.score ?? 0) - (a?.score ?? 0)) ?? []
|
||||
|
||||
return sortedResults.map((item) => (item.metadata as any)?.task ?? '')
|
||||
}
|
||||
|
||||
export const executionAgent = async (
|
||||
openai: OpenAIApi,
|
||||
pinecone: PineconeClient,
|
||||
indexName: string,
|
||||
embeddingList: Map<string, number[]>,
|
||||
objective: string,
|
||||
task: Task,
|
||||
gptVersion = 'gpt-3.5-turbo'
|
||||
) => {
|
||||
const context = await contextAgent(openai, pinecone, indexName, embeddingList, objective, 5)
|
||||
const prompt = `You are an AI who performs one task based on the following objective: ${objective}.\nTake into account these previously completed tasks: ${context}\nYour task: ${task.name}\nResponse:`
|
||||
|
||||
//console.log('\nexecution prompt: ', prompt, '\n')
|
||||
|
||||
return openAICall(openai, prompt, gptVersion, 0.7, 2000)
|
||||
}
|
||||
|
||||
export const mainLoop = async (
|
||||
openai: OpenAIApi,
|
||||
pinecone: PineconeClient,
|
||||
indexName: string,
|
||||
embeddingList: Map<string, number[]>,
|
||||
index: VectorOperationsApi,
|
||||
taskList: Task[],
|
||||
objective: string,
|
||||
modelName: string,
|
||||
taskLoop: string
|
||||
): Promise<string> => {
|
||||
const RUN_LIMIT = parseInt(taskLoop, 10) || 3
|
||||
let finalResult = ''
|
||||
|
||||
for (let run = 0; run < RUN_LIMIT; run++) {
|
||||
let enrichedResult: any
|
||||
let task: Task | undefined
|
||||
|
||||
if (taskList.length > 0) {
|
||||
// Step 1: Pull the task
|
||||
task = taskList.shift()
|
||||
|
||||
if (!task) {
|
||||
//console.log('No tasks left to complete. Exiting.')
|
||||
break
|
||||
}
|
||||
|
||||
console.log(`\x1b[95m\x1b[1m\n*****TASK LIST*****\n\x1b[0m\x1b[0m
|
||||
${taskList.map((t) => ` ${t?.priority}. ${t?.name}`).join('\n')}
|
||||
\x1b[92m\x1b[1m\n*****NEXT TASK*****\n\x1b[0m\x1b[0m
|
||||
${task.name}`)
|
||||
|
||||
// Step 2: Execute the task
|
||||
const result = await executionAgent(openai, pinecone, indexName, embeddingList, objective, task)
|
||||
console.log('\x1b[93m\x1b[1m\n*****TASK RESULT*****\n\x1b[0m\x1b[0m')
|
||||
console.log(result)
|
||||
finalResult = result
|
||||
|
||||
// Step 3: Enrich result and store in Pinecone
|
||||
enrichedResult = { data: result }
|
||||
const vector = enrichedResult.data // extract the actual result from the dictionary
|
||||
const embeddingResult = await getADAEmbedding(openai, vector, embeddingList)
|
||||
await index.upsert({
|
||||
upsertRequest: {
|
||||
vectors: [
|
||||
{
|
||||
id: task.id,
|
||||
values: embeddingResult,
|
||||
metadata: { task: task.name, result }
|
||||
}
|
||||
]
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Step 4: Create new tasks and reprioritize task list
|
||||
if (enrichedResult) {
|
||||
const newTasks = await taskCreationAgent(openai, taskList, objective, enrichedResult.data, task!.name)
|
||||
//console.log('newTasks', newTasks)
|
||||
taskList = [...taskList, ...newTasks]
|
||||
|
||||
taskList = await prioritizationAgent(openai, taskList, task!.priority, objective, modelName)
|
||||
//console.log(`Reprioritized task list: ${taskList.map((t) => `[${t?.priority}] ${t?.id}: ${t?.name}`).join(', ')}`)
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return finalResult
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: BabyAGI_Agents }
|
||||
|
|
@ -0,0 +1,9 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" class="icon icon-tabler icon-tabler-robot" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-linejoin="round">
|
||||
<path stroke="none" d="M0 0h24v24H0z" fill="none"></path>
|
||||
<path d="M7 7h10a2 2 0 0 1 2 2v1l1 1v3l-1 1v3a2 2 0 0 1 -2 2h-10a2 2 0 0 1 -2 -2v-3l-1 -1v-3l1 -1v-1a2 2 0 0 1 2 -2z"></path>
|
||||
<path d="M10 16h4"></path>
|
||||
<circle cx="8.5" cy="11.5" r=".5" fill="currentColor"></circle>
|
||||
<circle cx="15.5" cy="11.5" r=".5" fill="currentColor"></circle>
|
||||
<path d="M9 7l-1 -4"></path>
|
||||
<path d="M15 7l1 -4"></path>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 650 B |
|
|
@ -29,6 +29,18 @@ class ChatOpenAI_ChatModels implements INode {
|
|||
name: 'modelName',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
label: 'gpt-4',
|
||||
name: 'gpt-4'
|
||||
},
|
||||
{
|
||||
label: 'gpt-4-0314',
|
||||
name: 'gpt-4-0314'
|
||||
},
|
||||
{
|
||||
label: 'gpt-4-32k-0314',
|
||||
name: 'gpt-4-32k-0314'
|
||||
},
|
||||
{
|
||||
label: 'gpt-3.5-turbo',
|
||||
name: 'gpt-3.5-turbo'
|
||||
|
|
|
|||
|
|
@ -28,10 +28,12 @@
|
|||
"moment": "^2.29.3",
|
||||
"node-fetch": "2",
|
||||
"pdfjs-dist": "^3.5.141",
|
||||
"uuid": "^9.0.0",
|
||||
"ws": "^8.9.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/gulp": "4.0.9",
|
||||
"@types/uuid": "^9.0.1",
|
||||
"@types/ws": "^8.5.3",
|
||||
"gulp": "^4.0.2",
|
||||
"typescript": "^4.8.4"
|
||||
|
|
|
|||
|
|
@ -0,0 +1,104 @@
|
|||
{
|
||||
"description": "Given an objective, tasks will be created, stored into Pinecone and reprioritized",
|
||||
"nodes": [
|
||||
{
|
||||
"width": 300,
|
||||
"height": 769,
|
||||
"id": "babyAGI_0",
|
||||
"position": {
|
||||
"x": 542.130412774738,
|
||||
"y": 154.52145148106695
|
||||
},
|
||||
"type": "customNode",
|
||||
"data": {
|
||||
"id": "babyAGI_0",
|
||||
"label": "BabyAGI",
|
||||
"name": "babyAGI",
|
||||
"type": "BabyAGI",
|
||||
"baseClasses": ["AgentExecutor"],
|
||||
"category": "Agents",
|
||||
"description": "Conversational agent for a chat model. It will utilize chat specific prompts",
|
||||
"inputParams": [
|
||||
{
|
||||
"label": "Task Loop",
|
||||
"name": "taskLoop",
|
||||
"type": "number",
|
||||
"default": 3
|
||||
},
|
||||
{
|
||||
"label": "OpenAI Api Key",
|
||||
"name": "openAIApiKey",
|
||||
"type": "password"
|
||||
},
|
||||
{
|
||||
"label": "Pinecone Api Key",
|
||||
"name": "pineconeApiKey",
|
||||
"type": "password"
|
||||
},
|
||||
{
|
||||
"label": "Pinecone Environment",
|
||||
"name": "pineconeEnv",
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"label": "Pinecone Index",
|
||||
"name": "pineconeIndex",
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"label": "Model Name",
|
||||
"name": "modelName",
|
||||
"type": "options",
|
||||
"options": [
|
||||
{
|
||||
"label": "gpt-4",
|
||||
"name": "gpt-4"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-0314",
|
||||
"name": "gpt-4-0314"
|
||||
},
|
||||
{
|
||||
"label": "gpt-4-32k-0314",
|
||||
"name": "gpt-4-32k-0314"
|
||||
},
|
||||
{
|
||||
"label": "gpt-3.5-turbo",
|
||||
"name": "gpt-3.5-turbo"
|
||||
},
|
||||
{
|
||||
"label": "gpt-3.5-turbo-0301",
|
||||
"name": "gpt-3.5-turbo-0301"
|
||||
}
|
||||
],
|
||||
"default": "gpt-3.5-turbo",
|
||||
"optional": true
|
||||
}
|
||||
],
|
||||
"inputAnchors": [],
|
||||
"inputs": {
|
||||
"taskLoop": "3",
|
||||
"pineconeEnv": "us-west4-gcp",
|
||||
"pineconeIndex": "test",
|
||||
"modelName": "gpt-3.5-turbo"
|
||||
},
|
||||
"outputAnchors": [
|
||||
{
|
||||
"id": "babyAGI_0-output-babyAGI-AgentExecutor",
|
||||
"name": "babyAGI",
|
||||
"label": "BabyAGI",
|
||||
"type": "AgentExecutor"
|
||||
}
|
||||
],
|
||||
"selected": false
|
||||
},
|
||||
"selected": false,
|
||||
"dragging": false,
|
||||
"positionAbsolute": {
|
||||
"x": 542.130412774738,
|
||||
"y": 154.52145148106695
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": []
|
||||
}
|
||||
|
|
@ -107,7 +107,9 @@ export const getEndingNode = (nodeDependencies: INodeDependencies, graph: INodeD
|
|||
// Find ending node
|
||||
let endingNodeId = ''
|
||||
Object.keys(graph).forEach((nodeId) => {
|
||||
if (!graph[nodeId].length && nodeDependencies[nodeId] > 0) {
|
||||
if (Object.keys(nodeDependencies).length === 1) {
|
||||
endingNodeId = nodeId
|
||||
} else if (!graph[nodeId].length && nodeDependencies[nodeId] > 0) {
|
||||
endingNodeId = nodeId
|
||||
}
|
||||
})
|
||||
|
|
|
|||
|
|
@ -1,7 +1,3 @@
|
|||
.cloudform {
|
||||
position: relative;
|
||||
}
|
||||
|
||||
.messagelist {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
|
|
@ -113,13 +109,11 @@
|
|||
position: relative;
|
||||
flex-direction: column;
|
||||
padding: 10px;
|
||||
max-width: 500px;
|
||||
}
|
||||
|
||||
.cloud {
|
||||
width: '100%';
|
||||
max-width: 500px;
|
||||
height: 73vh;
|
||||
width: 400px;
|
||||
height: calc(100vh - 260px);
|
||||
border-radius: 0.5rem;
|
||||
display: flex;
|
||||
justify-content: center;
|
||||
|
|
|
|||
|
|
@ -336,13 +336,13 @@ export const ChatMessage = ({ chatflowid }) => {
|
|||
</div>
|
||||
<Divider />
|
||||
<div className='center'>
|
||||
<div className='cloudform'>
|
||||
<form onSubmit={handleSubmit}>
|
||||
<div style={{ width: '100%' }}>
|
||||
<form style={{ width: '100%' }} onSubmit={handleSubmit}>
|
||||
<OutlinedInput
|
||||
inputRef={inputRef}
|
||||
// eslint-disable-next-line
|
||||
autoFocus
|
||||
sx={{ width: '50vh' }}
|
||||
sx={{ width: '100%' }}
|
||||
disabled={loading || !chatflowid}
|
||||
onKeyDown={handleEnter}
|
||||
id='userInput'
|
||||
|
|
|
|||
Loading…
Reference in New Issue