import { VectorStore } from '@langchain/core/vectorstores' import { BaseLanguageModel } from '@langchain/core/language_models/base' import { PromptTemplate } from '@langchain/core/prompts' import { HydeRetriever, HydeRetrieverOptions, PromptKey } from 'langchain/retrievers/hyde' import { handleEscapeCharacters } from '../../../src/utils' import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' class HydeRetriever_Retrievers implements INode { label: string name: string version: number description: string type: string icon: string category: string baseClasses: string[] inputs: INodeParams[] outputs: INodeOutputsValue[] constructor() { this.label = 'HyDE Retriever' this.name = 'HydeRetriever' this.version = 3.0 this.type = 'HydeRetriever' this.icon = 'hyderetriever.svg' this.category = 'Retrievers' this.description = 'Use HyDE retriever to retrieve from a vector store' this.baseClasses = [this.type, 'BaseRetriever'] this.inputs = [ { label: 'Language Model', name: 'model', type: 'BaseLanguageModel' }, { label: 'Vector Store', name: 'vectorStore', type: 'VectorStore' }, { label: 'Query', name: 'query', type: 'string', description: 'Query to retrieve documents from retriever. If not specified, user question will be used', optional: true, acceptVariable: true }, { label: 'Select Defined Prompt', name: 'promptKey', description: 'Select a pre-defined prompt', type: 'options', options: [ { label: 'websearch', name: 'websearch', description: `Please write a passage to answer the question Question: {question} Passage:` }, { label: 'scifact', name: 'scifact', description: `Please write a scientific paper passage to support/refute the claim Claim: {question} Passage:` }, { label: 'arguana', name: 'arguana', description: `Please write a counter argument for the passage Passage: {question} Counter Argument:` }, { label: 'trec-covid', name: 'trec-covid', description: `Please write a scientific paper passage to answer the question Question: {question} Passage:` }, { label: 'fiqa', name: 'fiqa', description: `Please write a financial article passage to answer the question Question: {question} Passage:` }, { label: 'dbpedia-entity', name: 'dbpedia-entity', description: `Please write a passage to answer the question. Question: {question} Passage:` }, { label: 'trec-news', name: 'trec-news', description: `Please write a news passage about the topic. Topic: {question} Passage:` }, { label: 'mr-tydi', name: 'mr-tydi', description: `Please write a passage in Swahili/Korean/Japanese/Bengali to answer the question in detail. Question: {question} Passage:` } ], default: 'websearch' }, { label: 'Custom Prompt', name: 'customPrompt', description: 'If custom prompt is used, this will override Defined Prompt', placeholder: 'Please write a passage to answer the question\nQuestion: {question}\nPassage:', type: 'string', rows: 4, additionalParams: true, optional: true }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to 4', placeholder: '4', type: 'number', default: 4, additionalParams: true, optional: true } ] this.outputs = [ { label: 'HyDE Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Document', name: 'document', description: 'Array of document objects containing metadata and pageContent', baseClasses: ['Document', 'json'] }, { label: 'Text', name: 'text', description: 'Concatenated string from pageContent of documents', baseClasses: ['string', 'json'] } ] } async init(nodeData: INodeData, input: string): Promise { const llm = nodeData.inputs?.model as BaseLanguageModel const vectorStore = nodeData.inputs?.vectorStore as VectorStore const promptKey = nodeData.inputs?.promptKey as PromptKey const customPrompt = nodeData.inputs?.customPrompt as string const query = nodeData.inputs?.query as string const topK = nodeData.inputs?.topK as string const k = topK ? parseFloat(topK) : 4 const output = nodeData.outputs?.output as string const obj: HydeRetrieverOptions = { llm, vectorStore, k } if (customPrompt) obj.promptTemplate = PromptTemplate.fromTemplate(customPrompt) else if (promptKey) obj.promptTemplate = promptKey const retriever = new HydeRetriever(obj) retriever.filter = vectorStore?.lc_kwargs?.filter ?? (vectorStore as any).filter if (output === 'retriever') return retriever else if (output === 'document') return await retriever.getRelevantDocuments(query ? query : input) else if (output === 'text') { let finaltext = '' const docs = await retriever.getRelevantDocuments(query ? query : input) for (const doc of docs) finaltext += `${doc.pageContent}\n` return handleEscapeCharacters(finaltext, false) } return retriever } } module.exports = { nodeClass: HydeRetriever_Retrievers }