import { BaseLanguageModel } from '@langchain/core/language_models/base' import { BaseRetriever } from '@langchain/core/retrievers' import { VectorStoreRetriever } from '@langchain/core/vectorstores' import { ContextualCompressionRetriever } from 'langchain/retrievers/contextual_compression' import { ReciprocalRankFusion } from './ReciprocalRankFusion' import { handleEscapeCharacters } from '../../../src/utils' import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' class RRFRetriever_Retrievers implements INode { label: string name: string version: number description: string type: string icon: string category: string baseClasses: string[] inputs: INodeParams[] badge: string outputs: INodeOutputsValue[] constructor() { this.label = 'Reciprocal Rank Fusion Retriever' this.name = 'RRFRetriever' this.version = 1.0 this.type = 'RRFRetriever' this.icon = 'rrfRetriever.svg' this.category = 'Retrievers' this.description = 'Reciprocal Rank Fusion to re-rank search results by multiple query generation.' this.baseClasses = [this.type, 'BaseRetriever'] this.inputs = [ { label: 'Vector Store Retriever', name: 'baseRetriever', type: 'VectorStoreRetriever' }, { label: 'Language Model', name: 'model', type: 'BaseLanguageModel' }, { label: 'Query', name: 'query', type: 'string', description: 'Query to retrieve documents from retriever. If not specified, user question will be used', optional: true, acceptVariable: true }, { label: 'Query Count', name: 'queryCount', description: 'Number of synthetic queries to generate. Default to 4', placeholder: '4', type: 'number', default: 4, additionalParams: true, optional: true }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to the TopK of the Base Retriever', placeholder: '0', type: 'number', additionalParams: true, optional: true }, { label: 'Constant', name: 'c', description: 'A constant added to the rank, controlling the balance between the importance of high-ranked items and the consideration given to lower-ranked items.\n' + 'Default is 60', placeholder: '60', type: 'number', default: 60, additionalParams: true, optional: true } ] this.outputs = [ { label: 'Reciprocal Rank Fusion Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Document', name: 'document', description: 'Array of document objects containing metadata and pageContent', baseClasses: ['Document', 'json'] }, { label: 'Text', name: 'text', description: 'Concatenated string from pageContent of documents', baseClasses: ['string', 'json'] } ] } async init(nodeData: INodeData, input: string): Promise { const llm = nodeData.inputs?.model as BaseLanguageModel const baseRetriever = nodeData.inputs?.baseRetriever as BaseRetriever const query = nodeData.inputs?.query as string const queryCount = nodeData.inputs?.queryCount as string const q = queryCount ? parseFloat(queryCount) : 4 const topK = nodeData.inputs?.topK as string const k = topK ? parseFloat(topK) : (baseRetriever as VectorStoreRetriever).k ?? 4 const constantC = nodeData.inputs?.c as string const c = topK ? parseFloat(constantC) : 60 const output = nodeData.outputs?.output as string const ragFusion = new ReciprocalRankFusion(llm, baseRetriever as VectorStoreRetriever, q, k, c) const retriever = new ContextualCompressionRetriever({ baseCompressor: ragFusion, baseRetriever: baseRetriever }) if (output === 'retriever') return retriever else if (output === 'document') return await retriever.getRelevantDocuments(query ? query : input) else if (output === 'text') { let finaltext = '' const docs = await retriever.getRelevantDocuments(query ? query : input) for (const doc of docs) finaltext += `${doc.pageContent}\n` return handleEscapeCharacters(finaltext, false) } return retriever } } module.exports = { nodeClass: RRFRetriever_Retrievers }