import { VectorStore } from 'langchain/vectorstores/base' import { INode, INodeData, INodeParams, INodeOutputsValue } from '../../../src/Interface' import { handleEscapeCharacters } from '../../../src' import { ScoreThresholdRetriever } from 'langchain/retrievers/score_threshold' class SimilarityThresholdRetriever_Retrievers implements INode { label: string name: string version: number description: string type: string icon: string category: string baseClasses: string[] inputs: INodeParams[] outputs: INodeOutputsValue[] constructor() { this.label = 'Similarity Score Threshold Retriever' this.name = 'similarityThresholdRetriever' this.version = 2.0 this.type = 'SimilarityThresholdRetriever' this.icon = 'similaritythreshold.svg' this.category = 'Retrievers' this.description = 'Return results based on the minimum similarity percentage' this.baseClasses = [this.type, 'BaseRetriever'] this.inputs = [ { label: 'Vector Store', name: 'vectorStore', type: 'VectorStore' }, { label: 'Query', name: 'query', type: 'string', description: 'Query to retrieve documents from retriever. If not specified, user question will be used', optional: true, acceptVariable: true }, { label: 'Minimum Similarity Score (%)', name: 'minSimilarityScore', description: 'Finds results with at least this similarity score', type: 'number', default: 80, step: 1 }, { label: 'Max K', name: 'maxK', description: `The maximum number of results to fetch`, type: 'number', default: 20, step: 1, additionalParams: true }, { label: 'K Increment', name: 'kIncrement', description: `How much to increase K by each time. It'll fetch N results, then N + kIncrement, then N + kIncrement * 2, etc.`, type: 'number', default: 2, step: 1, additionalParams: true } ] this.outputs = [ { label: 'Similarity Threshold Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Document', name: 'document', baseClasses: ['Document'] }, { label: 'Text', name: 'text', baseClasses: ['string', 'json'] } ] } async init(nodeData: INodeData, input: string): Promise { const vectorStore = nodeData.inputs?.vectorStore as VectorStore const minSimilarityScore = nodeData.inputs?.minSimilarityScore as number const query = nodeData.inputs?.query as string const maxK = nodeData.inputs?.maxK as string const kIncrement = nodeData.inputs?.kIncrement as string const output = nodeData.outputs?.output as string const retriever = ScoreThresholdRetriever.fromVectorStore(vectorStore, { minSimilarityScore: minSimilarityScore ? minSimilarityScore / 100 : 0.9, maxK: maxK ? parseInt(maxK, 10) : 100, kIncrement: kIncrement ? parseInt(kIncrement, 10) : 2 }) if (output === 'retriever') return retriever else if (output === 'document') return await retriever.getRelevantDocuments(query ? query : input) else if (output === 'text') { let finaltext = '' const docs = await retriever.getRelevantDocuments(query ? query : input) for (const doc of docs) finaltext += `${doc.pageContent}\n` return handleEscapeCharacters(finaltext, false) } return retriever } } module.exports = { nodeClass: SimilarityThresholdRetriever_Retrievers }