import { flatten } from 'lodash'
import { ChainValues } from '@langchain/core/utils/types'
import { AgentStep } from '@langchain/core/agents'
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { RunnableSequence } from '@langchain/core/runnables'
import { Tool } from '@langchain/core/tools'
import { ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder } from '@langchain/core/prompts'
import { formatLogToMessage } from 'langchain/agents/format_scratchpad/log_to_message'
import { getBaseClasses, transformBracesWithColon } from '../../../src/utils'
import {
FlowiseMemory,
ICommonObject,
IMessage,
INode,
INodeData,
INodeParams,
IServerSideEventStreamer,
IUsedTool
} from '../../../src/Interface'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { AgentExecutor, XMLAgentOutputParser } from '../../../src/agents'
import { Moderation, checkInputs } from '../../moderation/Moderation'
import { formatResponse } from '../../outputparsers/OutputParserHelpers'
const defaultSystemMessage = `You are a helpful assistant. Help the user answer any questions.
You have access to the following tools:
{tools}
In order to use a tool, you can use and tags. You will then get back a response in the form
For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond:
searchweather in SF
64 degrees
When you are done, respond with a final answer between . For example:
The weather in SF is 64 degrees
Begin!
Previous Conversation:
{chat_history}
Question: {input}
{agent_scratchpad}`
class XMLAgent_Agents implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
sessionId?: string
constructor(fields?: { sessionId?: string }) {
this.label = 'XML Agent'
this.name = 'xmlAgent'
this.version = 2.0
this.type = 'XMLAgent'
this.category = 'Agents'
this.icon = 'xmlagent.svg'
this.description = `Agent that is designed for LLMs that are good for reasoning/writing XML (e.g: Anthropic Claude)`
this.baseClasses = [this.type, ...getBaseClasses(AgentExecutor)]
this.inputs = [
{
label: 'Tools',
name: 'tools',
type: 'Tool',
list: true
},
{
label: 'Memory',
name: 'memory',
type: 'BaseChatMemory'
},
{
label: 'Chat Model',
name: 'model',
type: 'BaseChatModel'
},
{
label: 'System Message',
name: 'systemMessage',
type: 'string',
warning: 'Prompt must include input variables: {tools}, {chat_history}, {input} and {agent_scratchpad}',
rows: 4,
default: defaultSystemMessage,
additionalParams: true
},
{
label: 'Input Moderation',
description: 'Detect text that could generate harmful output and prevent it from being sent to the language model',
name: 'inputModeration',
type: 'Moderation',
optional: true,
list: true
},
{
label: 'Max Iterations',
name: 'maxIterations',
type: 'number',
optional: true,
additionalParams: true
}
]
this.sessionId = fields?.sessionId
}
async init(): Promise {
return null
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise {
const memory = nodeData.inputs?.memory as FlowiseMemory
const moderations = nodeData.inputs?.inputModeration as Moderation[]
const shouldStreamResponse = options.shouldStreamResponse
const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer
const chatId = options.chatId
if (moderations && moderations.length > 0) {
try {
// Use the output of the moderation chain as input for the OpenAI Function Agent
input = await checkInputs(moderations, input)
} catch (e) {
await new Promise((resolve) => setTimeout(resolve, 500))
// if (options.shouldStreamResponse) {
// streamResponse(options.sseStreamer, options.chatId, e.message)
// }
return formatResponse(e.message)
}
}
const executor = await prepareAgent(nodeData, options, { sessionId: this.sessionId, chatId: options.chatId, input })
const loggerHandler = new ConsoleCallbackHandler(options.logger)
const callbacks = await additionalCallbacks(nodeData, options)
let res: ChainValues = {}
let sourceDocuments: ICommonObject[] = []
let usedTools: IUsedTool[] = []
if (shouldStreamResponse) {
const handler = new CustomChainHandler(sseStreamer, chatId)
res = await executor.invoke({ input }, { callbacks: [loggerHandler, handler, ...callbacks] })
if (res.sourceDocuments) {
if (sseStreamer) {
sseStreamer.streamSourceDocumentsEvent(chatId, flatten(res.sourceDocuments))
}
sourceDocuments = res.sourceDocuments
}
if (res.usedTools) {
if (sseStreamer) {
sseStreamer.streamUsedToolsEvent(chatId, flatten(res.usedTools))
}
usedTools = res.usedTools
}
// If the tool is set to returnDirect, stream the output to the client
if (res.usedTools && res.usedTools.length) {
let inputTools = nodeData.inputs?.tools
inputTools = flatten(inputTools)
for (const tool of res.usedTools) {
const inputTool = inputTools.find((inputTool: Tool) => inputTool.name === tool.tool)
if (inputTool && inputTool.returnDirect) {
if (sseStreamer) {
sseStreamer.streamTokenEvent(chatId, tool.toolOutput)
}
}
}
}
} else {
res = await executor.invoke({ input }, { callbacks: [loggerHandler, ...callbacks] })
if (res.sourceDocuments) {
sourceDocuments = res.sourceDocuments
}
if (res.usedTools) {
usedTools = res.usedTools
}
}
await memory.addChatMessages(
[
{
text: input,
type: 'userMessage'
},
{
text: res?.output,
type: 'apiMessage'
}
],
this.sessionId
)
let finalRes = res?.output
if (sourceDocuments.length || usedTools.length) {
finalRes = { text: res?.output }
if (sourceDocuments.length) {
finalRes.sourceDocuments = flatten(sourceDocuments)
}
if (usedTools.length) {
finalRes.usedTools = usedTools
}
return finalRes
}
return finalRes
}
}
const prepareAgent = async (
nodeData: INodeData,
options: ICommonObject,
flowObj: { sessionId?: string; chatId?: string; input?: string }
) => {
const model = nodeData.inputs?.model as BaseChatModel
const maxIterations = nodeData.inputs?.maxIterations as string
const memory = nodeData.inputs?.memory as FlowiseMemory
let systemMessage = nodeData.inputs?.systemMessage as string
let tools = nodeData.inputs?.tools
tools = flatten(tools)
const inputKey = memory.inputKey ? memory.inputKey : 'input'
const memoryKey = memory.memoryKey ? memory.memoryKey : 'chat_history'
const prependMessages = options?.prependMessages
systemMessage = transformBracesWithColon(systemMessage)
let promptMessage = systemMessage ? systemMessage : defaultSystemMessage
if (memory.memoryKey) promptMessage = promptMessage.replaceAll('{chat_history}', `{${memory.memoryKey}}`)
if (memory.inputKey) promptMessage = promptMessage.replaceAll('{input}', `{${memory.inputKey}}`)
const prompt = ChatPromptTemplate.fromMessages([
HumanMessagePromptTemplate.fromTemplate(promptMessage),
new MessagesPlaceholder('agent_scratchpad')
])
const missingVariables = ['tools', 'agent_scratchpad'].filter((v) => !prompt.inputVariables.includes(v))
if (missingVariables.length > 0) {
throw new Error(`Provided prompt is missing required input variables: ${JSON.stringify(missingVariables)}`)
}
const llmWithStop = model.bind({ stop: ['', ''] })
const messages = (await memory.getChatMessages(flowObj.sessionId, false, prependMessages)) as IMessage[]
let chatHistoryMsgTxt = ''
for (const message of messages) {
if (message.type === 'apiMessage') {
chatHistoryMsgTxt += `\\nAI:${message.message}`
} else if (message.type === 'userMessage') {
chatHistoryMsgTxt += `\\nHuman:${message.message}`
}
}
const runnableAgent = RunnableSequence.from([
{
[inputKey]: (i: { input: string; tools: Tool[]; steps: AgentStep[] }) => i.input,
agent_scratchpad: (i: { input: string; tools: Tool[]; steps: AgentStep[] }) => formatLogToMessage(i.steps),
tools: (_: { input: string; tools: Tool[]; steps: AgentStep[] }) =>
tools.map((tool: Tool) => `${tool.name}: ${tool.description}`),
[memoryKey]: (_: { input: string; tools: Tool[]; steps: AgentStep[] }) => chatHistoryMsgTxt
},
prompt,
llmWithStop,
new XMLAgentOutputParser()
])
const executor = AgentExecutor.fromAgentAndTools({
agent: runnableAgent,
tools,
sessionId: flowObj?.sessionId,
chatId: flowObj?.chatId,
input: flowObj?.input,
isXML: true,
verbose: process.env.DEBUG === 'true',
maxIterations: maxIterations ? parseFloat(maxIterations) : undefined
})
return executor
}
module.exports = { nodeClass: XMLAgent_Agents }