import { flatten } from 'lodash' import { Pinecone } from '@pinecone-database/pinecone' import { PineconeLibArgs, PineconeStore } from 'langchain/vectorstores/pinecone' import { Embeddings } from 'langchain/embeddings/base' import { Document } from 'langchain/document' import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils' import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils' class Pinecone_VectorStores implements INode { label: string name: string version: number description: string type: string icon: string category: string badge: string baseClasses: string[] inputs: INodeParams[] credential: INodeParams outputs: INodeOutputsValue[] constructor() { this.label = 'Pinecone' this.name = 'pinecone' this.version = 2.0 this.type = 'Pinecone' this.icon = 'pinecone.svg' this.category = 'Vector Stores' this.description = `Upsert embedded data and perform similarity or mmr search using Pinecone, a leading fully managed hosted vector database` this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever'] this.badge = 'NEW' this.credential = { label: 'Connect Credential', name: 'credential', type: 'credential', credentialNames: ['pineconeApi'] } this.inputs = [ { label: 'Document', name: 'document', type: 'Document', list: true, optional: true }, { label: 'Embeddings', name: 'embeddings', type: 'Embeddings' }, { label: 'Pinecone Index', name: 'pineconeIndex', type: 'string' }, { label: 'Pinecone Namespace', name: 'pineconeNamespace', type: 'string', placeholder: 'my-first-namespace', additionalParams: true, optional: true }, { label: 'Pinecone Metadata Filter', name: 'pineconeMetadataFilter', type: 'json', optional: true, additionalParams: true }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to 4', placeholder: '4', type: 'number', additionalParams: true, optional: true } ] addMMRInputParams(this.inputs) this.outputs = [ { label: 'Pinecone Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Pinecone Vector Store', name: 'vectorStore', baseClasses: [this.type, ...getBaseClasses(PineconeStore)] } ] } //@ts-ignore vectorStoreMethods = { async upsert(nodeData: INodeData, options: ICommonObject): Promise { const index = nodeData.inputs?.pineconeIndex as string const pineconeNamespace = nodeData.inputs?.pineconeNamespace as string const docs = nodeData.inputs?.document as Document[] const embeddings = nodeData.inputs?.embeddings as Embeddings const credentialData = await getCredentialData(nodeData.credential ?? '', options) const pineconeApiKey = getCredentialParam('pineconeApiKey', credentialData, nodeData) const pineconeEnv = getCredentialParam('pineconeEnv', credentialData, nodeData) const client = new Pinecone({ apiKey: pineconeApiKey, environment: pineconeEnv }) const pineconeIndex = client.Index(index) const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { if (flattenDocs[i] && flattenDocs[i].pageContent) { finalDocs.push(new Document(flattenDocs[i])) } } const obj: PineconeLibArgs = { pineconeIndex } if (pineconeNamespace) obj.namespace = pineconeNamespace try { await PineconeStore.fromDocuments(finalDocs, embeddings, obj) } catch (e) { throw new Error(e) } } } async init(nodeData: INodeData, _: string, options: ICommonObject): Promise { const index = nodeData.inputs?.pineconeIndex as string const pineconeNamespace = nodeData.inputs?.pineconeNamespace as string const pineconeMetadataFilter = nodeData.inputs?.pineconeMetadataFilter const docs = nodeData.inputs?.document as Document[] const embeddings = nodeData.inputs?.embeddings as Embeddings const credentialData = await getCredentialData(nodeData.credential ?? '', options) const pineconeApiKey = getCredentialParam('pineconeApiKey', credentialData, nodeData) const pineconeEnv = getCredentialParam('pineconeEnv', credentialData, nodeData) const client = new Pinecone({ apiKey: pineconeApiKey, environment: pineconeEnv }) const pineconeIndex = client.Index(index) const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { if (flattenDocs[i] && flattenDocs[i].pageContent) { finalDocs.push(new Document(flattenDocs[i])) } } const obj: PineconeLibArgs = { pineconeIndex } if (pineconeNamespace) obj.namespace = pineconeNamespace if (pineconeMetadataFilter) { const metadatafilter = typeof pineconeMetadataFilter === 'object' ? pineconeMetadataFilter : JSON.parse(pineconeMetadataFilter) obj.filter = metadatafilter } const vectorStore = await PineconeStore.fromExistingIndex(embeddings, obj) return resolveVectorStoreOrRetriever(nodeData, vectorStore) } } module.exports = { nodeClass: Pinecone_VectorStores }