import { flatten } from 'lodash' import { Embeddings } from '@langchain/core/embeddings' import { Document } from '@langchain/core/documents' import { AstraDBVectorStore, AstraLibArgs } from '@langchain/community/vectorstores/astradb' import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' import { getBaseClasses, getCredentialData } from '../../../src/utils' import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils' class Astra_VectorStores implements INode { label: string name: string version: number description: string type: string icon: string category: string badge: string baseClasses: string[] inputs: INodeParams[] credential: INodeParams outputs: INodeOutputsValue[] constructor() { this.label = 'Astra' this.name = 'Astra' this.version = 2.0 this.type = 'Astra' this.icon = 'astra.svg' this.category = 'Vector Stores' this.description = `Upsert embedded data and perform similarity or mmr search upon query using DataStax Astra DB, a serverless vector database that’s perfect for managing mission-critical AI workloads` this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever'] this.credential = { label: 'Connect Credential', name: 'credential', type: 'credential', credentialNames: ['AstraDBApi'] } this.inputs = [ { label: 'Document', name: 'document', type: 'Document', list: true, optional: true }, { label: 'Embeddings', name: 'embeddings', type: 'Embeddings' }, { label: 'Namespace', name: 'astraNamespace', type: 'string' }, { label: 'Collection', name: 'astraCollection', type: 'string' }, { label: 'Vector Dimension', name: 'vectorDimension', type: 'number', placeholder: '1536', optional: true, description: 'Dimension used for storing vector embedding' }, { label: 'Similarity Metric', name: 'similarityMetric', type: 'string', placeholder: 'cosine', optional: true, description: 'cosine | euclidean | dot_product' }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to 4', placeholder: '4', type: 'number', additionalParams: true, optional: true } ] addMMRInputParams(this.inputs) this.outputs = [ { label: 'Astra Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Astra Vector Store', name: 'vectorStore', baseClasses: [this.type, ...getBaseClasses(AstraDBVectorStore)] } ] } //@ts-ignore vectorStoreMethods = { async upsert(nodeData: INodeData, options: ICommonObject): Promise { const docs = nodeData.inputs?.document as Document[] const embeddings = nodeData.inputs?.embeddings as Embeddings const vectorDimension = nodeData.inputs?.vectorDimension as number const astraNamespace = nodeData.inputs?.astraNamespace as string const astraCollection = nodeData.inputs?.astraCollection as string const similarityMetric = nodeData.inputs?.similarityMetric as 'cosine' | 'euclidean' | 'dot_product' | undefined const credentialData = await getCredentialData(nodeData.credential ?? '', options) const expectedSimilarityMetric = ['cosine', 'euclidean', 'dot_product'] if (similarityMetric && !expectedSimilarityMetric.includes(similarityMetric)) { throw new Error(`Invalid Similarity Metric should be one of 'cosine' | 'euclidean' | 'dot_product'`) } const clientConfig = { token: credentialData?.applicationToken, endpoint: credentialData?.dbEndPoint } const astraConfig: AstraLibArgs = { ...clientConfig, namespace: astraNamespace ?? 'default_keyspace', collection: astraCollection ?? credentialData.collectionName ?? 'flowise_test', collectionOptions: { vector: { dimension: vectorDimension ?? 1536, metric: similarityMetric ?? 'cosine' } } } const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { if (flattenDocs[i] && flattenDocs[i].pageContent) { finalDocs.push(new Document(flattenDocs[i])) } } try { await AstraDBVectorStore.fromDocuments(finalDocs, embeddings, astraConfig) } catch (e) { throw new Error(e) } } } async init(nodeData: INodeData, _: string, options: ICommonObject): Promise { const docs = nodeData.inputs?.document as Document[] const embeddings = nodeData.inputs?.embeddings as Embeddings const vectorDimension = nodeData.inputs?.vectorDimension as number const similarityMetric = nodeData.inputs?.similarityMetric as 'cosine' | 'euclidean' | 'dot_product' | undefined const astraNamespace = nodeData.inputs?.astraNamespace as string const astraCollection = nodeData.inputs?.astraCollection as string const credentialData = await getCredentialData(nodeData.credential ?? '', options) const expectedSimilarityMetric = ['cosine', 'euclidean', 'dot_product'] if (similarityMetric && !expectedSimilarityMetric.includes(similarityMetric)) { throw new Error(`Invalid Similarity Metric should be one of 'cosine' | 'euclidean' | 'dot_product'`) } const clientConfig = { token: credentialData?.applicationToken, endpoint: credentialData?.dbEndPoint } const astraConfig: AstraLibArgs = { ...clientConfig, namespace: astraNamespace ?? 'default_keyspace', collection: astraCollection ?? credentialData.collectionName ?? 'flowise_test', collectionOptions: { vector: { dimension: vectorDimension ?? 1536, metric: similarityMetric ?? 'cosine' } } } const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { if (flattenDocs[i] && flattenDocs[i].pageContent) { finalDocs.push(new Document(flattenDocs[i])) } } const vectorStore = await AstraDBVectorStore.fromExistingIndex(embeddings, astraConfig) return resolveVectorStoreOrRetriever(nodeData, vectorStore) } } module.exports = { nodeClass: Astra_VectorStores }