import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' import { OpenSearchVectorStore } from 'langchain/vectorstores/opensearch' import { Embeddings } from 'langchain/embeddings/base' import { Document } from 'langchain/document' import { Client, RequestParams } from '@opensearch-project/opensearch' import { flatten } from 'lodash' import { getBaseClasses } from '../../../src/utils' import { buildMetadataTerms } from './core' class OpenSearchUpsert_VectorStores implements INode { label: string name: string version: number description: string type: string icon: string category: string baseClasses: string[] inputs: INodeParams[] outputs: INodeOutputsValue[] constructor() { this.label = 'OpenSearch Upsert Document' this.name = 'openSearchUpsertDocument' this.version = 1.0 this.type = 'OpenSearch' this.icon = 'opensearch.png' this.category = 'Vector Stores' this.description = 'Upsert documents to OpenSearch' this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever'] this.inputs = [ { label: 'Document', name: 'document', type: 'Document', list: true }, { label: 'Embeddings', name: 'embeddings', type: 'Embeddings' }, { label: 'OpenSearch URL', name: 'opensearchURL', type: 'string', placeholder: 'http://127.0.0.1:9200' }, { label: 'Index Name', name: 'indexName', type: 'string' }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to 4', placeholder: '4', type: 'number', additionalParams: true, optional: true } ] this.outputs = [ { label: 'OpenSearch Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'OpenSearch Vector Store', name: 'vectorStore', baseClasses: [this.type, ...getBaseClasses(OpenSearchVectorStore)] } ] } async init(nodeData: INodeData): Promise { const docs = nodeData.inputs?.document as Document[] const embeddings = nodeData.inputs?.embeddings as Embeddings const opensearchURL = nodeData.inputs?.opensearchURL as string const indexName = nodeData.inputs?.indexName as string const output = nodeData.outputs?.output as string const topK = nodeData.inputs?.topK as string const k = topK ? parseFloat(topK) : 4 const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { finalDocs.push(new Document(flattenDocs[i])) } const client = new Client({ nodes: [opensearchURL] }) const vectorStore = await OpenSearchVectorStore.fromDocuments(finalDocs, embeddings, { client, indexName }) vectorStore.similaritySearchVectorWithScore = async ( query: number[], k: number, filter?: object | undefined ): Promise<[Document, number][]> => { const search: RequestParams.Search = { index: indexName, body: { query: { bool: { filter: { bool: { must: buildMetadataTerms(filter) } }, must: [ { knn: { embedding: { vector: query, k } } } ] } }, size: k } } const { body } = await client.search(search) return body.hits.hits.map((hit: any) => [ new Document({ pageContent: hit._source.text, metadata: hit._source.metadata }), hit._score ]) } if (output === 'retriever') { const retriever = vectorStore.asRetriever(k) return retriever } else if (output === 'vectorStore') { ;(vectorStore as any).k = k return vectorStore } return vectorStore } } module.exports = { nodeClass: OpenSearchUpsert_VectorStores }