import { flatten } from 'lodash' import { QdrantClient } from '@qdrant/js-client-rest' import { VectorStoreRetrieverInput } from 'langchain/vectorstores/base' import { Document } from 'langchain/document' import { QdrantVectorStore, QdrantLibArgs } from 'langchain/vectorstores/qdrant' import { Embeddings } from 'langchain/embeddings/base' import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils' type RetrieverConfig = Partial> class Qdrant_VectorStores implements INode { label: string name: string version: number description: string type: string icon: string category: string badge: string baseClasses: string[] inputs: INodeParams[] credential: INodeParams outputs: INodeOutputsValue[] constructor() { this.label = 'Qdrant' this.name = 'qdrant' this.version = 1.0 this.type = 'Qdrant' this.icon = 'qdrant.png' this.category = 'Vector Stores' this.description = 'Upsert embedded data and perform similarity search upon query using Qdrant, a scalable open source vector database written in Rust' this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever'] this.badge = 'NEW' this.credential = { label: 'Connect Credential', name: 'credential', type: 'credential', description: 'Only needed when using Qdrant cloud hosted', optional: true, credentialNames: ['qdrantApi'] } this.inputs = [ { label: 'Document', name: 'document', type: 'Document', list: true, optional: true }, { label: 'Embeddings', name: 'embeddings', type: 'Embeddings' }, { label: 'Qdrant Server URL', name: 'qdrantServerUrl', type: 'string', placeholder: 'http://localhost:6333' }, { label: 'Qdrant Collection Name', name: 'qdrantCollection', type: 'string' }, { label: 'Vector Dimension', name: 'qdrantVectorDimension', type: 'number', default: 1536, additionalParams: true }, { label: 'Similarity', name: 'qdrantSimilarity', description: 'Similarity measure used in Qdrant.', type: 'options', default: 'Cosine', options: [ { label: 'Cosine', name: 'Cosine' }, { label: 'Euclid', name: 'Euclid' }, { label: 'Dot', name: 'Dot' } ], additionalParams: true }, { label: 'Additional Collection Cofiguration', name: 'qdrantCollectionConfiguration', description: 'Refer to collection docs for more reference', type: 'json', optional: true, additionalParams: true }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to 4', placeholder: '4', type: 'number', additionalParams: true, optional: true }, { label: 'Qdrant Search Filter', name: 'qdrantFilter', description: 'Only return points which satisfy the conditions', type: 'json', additionalParams: true, optional: true } ] this.outputs = [ { label: 'Qdrant Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Qdrant Vector Store', name: 'vectorStore', baseClasses: [this.type, ...getBaseClasses(QdrantVectorStore)] } ] } //@ts-ignore vectorStoreMethods = { async upsert(nodeData: INodeData, options: ICommonObject): Promise { const qdrantServerUrl = nodeData.inputs?.qdrantServerUrl as string const collectionName = nodeData.inputs?.qdrantCollection as string const docs = nodeData.inputs?.document as Document[] const embeddings = nodeData.inputs?.embeddings as Embeddings const qdrantSimilarity = nodeData.inputs?.qdrantSimilarity const qdrantVectorDimension = nodeData.inputs?.qdrantVectorDimension const credentialData = await getCredentialData(nodeData.credential ?? '', options) const qdrantApiKey = getCredentialParam('qdrantApiKey', credentialData, nodeData) const client = new QdrantClient({ url: qdrantServerUrl, apiKey: qdrantApiKey }) const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { if (flattenDocs[i] && flattenDocs[i].pageContent) { finalDocs.push(new Document(flattenDocs[i])) } } const dbConfig: QdrantLibArgs = { client, url: qdrantServerUrl, collectionName, collectionConfig: { vectors: { size: qdrantVectorDimension ? parseInt(qdrantVectorDimension, 10) : 1536, distance: qdrantSimilarity ?? 'Cosine' } } } try { await QdrantVectorStore.fromDocuments(finalDocs, embeddings, dbConfig) } catch (e) { throw new Error(e) } } } async init(nodeData: INodeData, _: string, options: ICommonObject): Promise { const qdrantServerUrl = nodeData.inputs?.qdrantServerUrl as string const collectionName = nodeData.inputs?.qdrantCollection as string let qdrantCollectionConfiguration = nodeData.inputs?.qdrantCollectionConfiguration const embeddings = nodeData.inputs?.embeddings as Embeddings const qdrantSimilarity = nodeData.inputs?.qdrantSimilarity const qdrantVectorDimension = nodeData.inputs?.qdrantVectorDimension const output = nodeData.outputs?.output as string const topK = nodeData.inputs?.topK as string let queryFilter = nodeData.inputs?.queryFilter const k = topK ? parseFloat(topK) : 4 const credentialData = await getCredentialData(nodeData.credential ?? '', options) const qdrantApiKey = getCredentialParam('qdrantApiKey', credentialData, nodeData) const client = new QdrantClient({ url: qdrantServerUrl, apiKey: qdrantApiKey }) const dbConfig: QdrantLibArgs = { client, collectionName } const retrieverConfig: RetrieverConfig = { k } if (qdrantCollectionConfiguration) { qdrantCollectionConfiguration = typeof qdrantCollectionConfiguration === 'object' ? qdrantCollectionConfiguration : JSON.parse(qdrantCollectionConfiguration) dbConfig.collectionConfig = { ...qdrantCollectionConfiguration, vectors: { ...qdrantCollectionConfiguration.vectors, size: qdrantVectorDimension ? parseInt(qdrantVectorDimension, 10) : 1536, distance: qdrantSimilarity ?? 'Cosine' } } } if (queryFilter) { retrieverConfig.filter = typeof queryFilter === 'object' ? queryFilter : JSON.parse(queryFilter) } const vectorStore = await QdrantVectorStore.fromExistingCollection(embeddings, dbConfig) if (output === 'retriever') { const retriever = vectorStore.asRetriever(retrieverConfig) return retriever } else if (output === 'vectorStore') { ;(vectorStore as any).k = k return vectorStore } return vectorStore } } module.exports = { nodeClass: Qdrant_VectorStores }