import { BaseCache } from '@langchain/core/caches' import { ChatVertexAI as LcChatVertexAI, ChatVertexAIInput } from '@langchain/google-vertexai' import { ICommonObject, IMultiModalOption, INode, INodeData, INodeOptionsValue, INodeParams, IVisionChatModal } from '../../../src/Interface' import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils' import { getModels, MODEL_TYPE } from '../../../src/modelLoader' const DEFAULT_IMAGE_MAX_TOKEN = 8192 const DEFAULT_IMAGE_MODEL = 'gemini-1.5-flash-latest' class ChatVertexAI extends LcChatVertexAI implements IVisionChatModal { configuredModel: string configuredMaxToken: number multiModalOption: IMultiModalOption id: string constructor(id: string, fields?: ChatVertexAIInput) { // @ts-ignore if (fields?.model) { fields.modelName = fields.model delete fields.model } super(fields ?? {}) this.id = id this.configuredModel = fields?.modelName || '' this.configuredMaxToken = fields?.maxOutputTokens ?? 2048 } revertToOriginalModel(): void { this.modelName = this.configuredModel this.maxOutputTokens = this.configuredMaxToken } setMultiModalOption(multiModalOption: IMultiModalOption): void { this.multiModalOption = multiModalOption } setVisionModel(): void { if (!this.modelName.startsWith('claude-3')) { this.modelName = DEFAULT_IMAGE_MODEL this.maxOutputTokens = this.configuredMaxToken ? this.configuredMaxToken : DEFAULT_IMAGE_MAX_TOKEN } } } class GoogleVertexAI_ChatModels implements INode { label: string name: string version: number type: string icon: string category: string description: string baseClasses: string[] credential: INodeParams inputs: INodeParams[] constructor() { this.label = 'ChatGoogleVertexAI' this.name = 'chatGoogleVertexAI' this.version = 5.1 this.type = 'ChatGoogleVertexAI' this.icon = 'GoogleVertex.svg' this.category = 'Chat Models' this.description = 'Wrapper around VertexAI large language models that use the Chat endpoint' this.baseClasses = [this.type, ...getBaseClasses(ChatVertexAI)] this.credential = { label: 'Connect Credential', name: 'credential', type: 'credential', credentialNames: ['googleVertexAuth'], optional: true, description: 'Google Vertex AI credential. If you are using a GCP service like Cloud Run, or if you have installed default credentials on your local machine, you do not need to set this credential.' } this.inputs = [ { label: 'Cache', name: 'cache', type: 'BaseCache', optional: true }, { label: 'Model Name', name: 'modelName', type: 'asyncOptions', loadMethod: 'listModels' }, { label: 'Custom Model Name', name: 'customModelName', type: 'string', placeholder: 'gemini-1.5-pro-exp-0801', description: 'Custom model name to use. If provided, it will override the model selected', additionalParams: true, optional: true }, { label: 'Temperature', name: 'temperature', type: 'number', step: 0.1, default: 0.9, optional: true }, { label: 'Allow Image Uploads', name: 'allowImageUploads', type: 'boolean', description: 'Allow image input. Refer to the docs for more details.', default: false, optional: true }, { label: 'Streaming', name: 'streaming', type: 'boolean', default: true, optional: true, additionalParams: true }, { label: 'Max Output Tokens', name: 'maxOutputTokens', type: 'number', step: 1, optional: true, additionalParams: true }, { label: 'Top Probability', name: 'topP', type: 'number', step: 0.1, optional: true, additionalParams: true }, { label: 'Top Next Highest Probability Tokens', name: 'topK', type: 'number', description: `Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive`, step: 1, optional: true, additionalParams: true } ] } //@ts-ignore loadMethods = { async listModels(): Promise { return await getModels(MODEL_TYPE.CHAT, 'chatGoogleVertexAI') } } async init(nodeData: INodeData, _: string, options: ICommonObject): Promise { const credentialData = await getCredentialData(nodeData.credential ?? '', options) const googleApplicationCredentialFilePath = getCredentialParam('googleApplicationCredentialFilePath', credentialData, nodeData) const googleApplicationCredential = getCredentialParam('googleApplicationCredential', credentialData, nodeData) const projectID = getCredentialParam('projectID', credentialData, nodeData) const authOptions: ICommonObject = {} if (Object.keys(credentialData).length !== 0) { if (!googleApplicationCredentialFilePath && !googleApplicationCredential) throw new Error('Please specify your Google Application Credential') if (!googleApplicationCredentialFilePath && !googleApplicationCredential) throw new Error( 'Error: More than one component has been inputted. Please use only one of the following: Google Application Credential File Path or Google Credential JSON Object' ) if (googleApplicationCredentialFilePath && !googleApplicationCredential) authOptions.keyFile = googleApplicationCredentialFilePath else if (!googleApplicationCredentialFilePath && googleApplicationCredential) authOptions.credentials = JSON.parse(googleApplicationCredential) if (projectID) authOptions.projectId = projectID } const temperature = nodeData.inputs?.temperature as string const modelName = nodeData.inputs?.modelName as string const customModelName = nodeData.inputs?.customModelName as string const maxOutputTokens = nodeData.inputs?.maxOutputTokens as string const topP = nodeData.inputs?.topP as string const cache = nodeData.inputs?.cache as BaseCache const topK = nodeData.inputs?.topK as string const streaming = nodeData.inputs?.streaming as boolean const allowImageUploads = nodeData.inputs?.allowImageUploads as boolean const multiModalOption: IMultiModalOption = { image: { allowImageUploads: allowImageUploads ?? false } } const obj: ChatVertexAIInput = { temperature: parseFloat(temperature), modelName: customModelName || modelName, streaming: streaming ?? true } if (Object.keys(authOptions).length !== 0) obj.authOptions = authOptions if (maxOutputTokens) obj.maxOutputTokens = parseInt(maxOutputTokens, 10) if (topP) obj.topP = parseFloat(topP) if (cache) obj.cache = cache if (topK) obj.topK = parseFloat(topK) const model = new ChatVertexAI(nodeData.id, obj) model.setMultiModalOption(multiModalOption) return model } } module.exports = { nodeClass: GoogleVertexAI_ChatModels }