import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' import { Embeddings } from 'langchain/embeddings/base' import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils' import { VectaraStore, VectaraLibArgs, VectaraFilter, VectaraContextConfig } from 'langchain/vectorstores/vectara' import { Document } from 'langchain/document' import { flatten } from 'lodash' class VectaraUpsert_VectorStores implements INode { label: string name: string version: number description: string type: string icon: string category: string baseClasses: string[] inputs: INodeParams[] credential: INodeParams outputs: INodeOutputsValue[] constructor() { this.label = 'Vectara Upsert Document' this.name = 'vectaraUpsert' this.version = 1.0 this.type = 'Vectara' this.icon = 'vectara.png' this.category = 'Vector Stores' this.description = 'Upsert documents to Vectara' this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever'] this.credential = { label: 'Connect Credential', name: 'credential', type: 'credential', credentialNames: ['vectaraApi'] } this.inputs = [ { label: 'Document', name: 'document', type: 'Document', list: true }, { label: 'Vectara Metadata Filter', name: 'filter', description: 'Filter to apply to Vectara metadata. Refer to the documentation on how to use Vectara filters with Flowise.', type: 'string', additionalParams: true, optional: true }, { label: 'Sentences Before', name: 'sentencesBefore', description: 'Number of sentences to fetch before the matched sentence. Defaults to 2.', type: 'number', additionalParams: true, optional: true }, { label: 'Sentences After', name: 'sentencesAfter', description: 'Number of sentences to fetch after the matched sentence. Defaults to 2.', type: 'number', additionalParams: true, optional: true }, { label: 'Lambda', name: 'lambda', description: 'Improves retrieval accuracy by adjusting the balance (from 0 to 1) between neural search and keyword-based search factors.', type: 'number', additionalParams: true, optional: true }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Defaults to 4', placeholder: '4', type: 'number', additionalParams: true, optional: true } ] this.outputs = [ { label: 'Vectara Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Vectara Vector Store', name: 'vectorStore', baseClasses: [this.type, ...getBaseClasses(VectaraStore)] } ] } async init(nodeData: INodeData, _: string, options: ICommonObject): Promise { const credentialData = await getCredentialData(nodeData.credential ?? '', options) const apiKey = getCredentialParam('apiKey', credentialData, nodeData) const customerId = getCredentialParam('customerID', credentialData, nodeData) const corpusId = getCredentialParam('corpusID', credentialData, nodeData).split(',') const docs = nodeData.inputs?.document as Document[] const embeddings = {} as Embeddings const vectaraMetadataFilter = nodeData.inputs?.filter as string const sentencesBefore = nodeData.inputs?.sentencesBefore as number const sentencesAfter = nodeData.inputs?.sentencesAfter as number const lambda = nodeData.inputs?.lambda as number const output = nodeData.outputs?.output as string const topK = nodeData.inputs?.topK as string const k = topK ? parseInt(topK, 10) : 4 const vectaraArgs: VectaraLibArgs = { apiKey: apiKey, customerId: customerId, corpusId: corpusId } const vectaraFilter: VectaraFilter = {} if (vectaraMetadataFilter) vectaraFilter.filter = vectaraMetadataFilter if (lambda) vectaraFilter.lambda = lambda const vectaraContextConfig: VectaraContextConfig = {} if (sentencesBefore) vectaraContextConfig.sentencesBefore = sentencesBefore if (sentencesAfter) vectaraContextConfig.sentencesAfter = sentencesAfter vectaraFilter.contextConfig = vectaraContextConfig const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { finalDocs.push(new Document(flattenDocs[i])) } const vectorStore = await VectaraStore.fromDocuments(finalDocs, embeddings, vectaraArgs) if (output === 'retriever') { const retriever = vectorStore.asRetriever(k, vectaraFilter) return retriever } else if (output === 'vectorStore') { ;(vectorStore as any).k = k return vectorStore } return vectorStore } } module.exports = { nodeClass: VectaraUpsert_VectorStores }