import { flatten } from 'lodash' import { Tool } from '@langchain/core/tools' import { BaseMessage } from '@langchain/core/messages' import { ChainValues } from '@langchain/core/utils/types' import { RunnableSequence } from '@langchain/core/runnables' import { BaseChatModel } from '@langchain/core/language_models/chat_models' import { ChatPromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate, PromptTemplate } from '@langchain/core/prompts' import { formatToOpenAIToolMessages } from 'langchain/agents/format_scratchpad/openai_tools' import { type ToolsAgentStep } from 'langchain/agents/openai/output_parser' import { extractOutputFromArray, getBaseClasses, handleEscapeCharacters, removeInvalidImageMarkdown, transformBracesWithColon } from '../../../src/utils' import { FlowiseMemory, ICommonObject, INode, INodeData, INodeParams, IServerSideEventStreamer, IUsedTool, IVisionChatModal } from '../../../src/Interface' import { ConsoleCallbackHandler, CustomChainHandler, CustomStreamingHandler, additionalCallbacks } from '../../../src/handler' import { AgentExecutor, ToolCallingAgentOutputParser } from '../../../src/agents' import { Moderation, checkInputs, streamResponse } from '../../moderation/Moderation' import { formatResponse } from '../../outputparsers/OutputParserHelpers' import { addImagesToMessages, llmSupportsVision } from '../../../src/multiModalUtils' class ToolAgent_Agents implements INode { label: string name: string version: number description: string type: string icon: string category: string baseClasses: string[] inputs: INodeParams[] sessionId?: string constructor(fields?: { sessionId?: string }) { this.label = 'Tool Agent' this.name = 'toolAgent' this.version = 2.0 this.type = 'AgentExecutor' this.category = 'Agents' this.icon = 'toolAgent.png' this.description = `Agent that uses Function Calling to pick the tools and args to call` this.baseClasses = [this.type, ...getBaseClasses(AgentExecutor)] this.inputs = [ { label: 'Tools', name: 'tools', type: 'Tool', list: true }, { label: 'Memory', name: 'memory', type: 'BaseChatMemory' }, { label: 'Tool Calling Chat Model', name: 'model', type: 'BaseChatModel', description: 'Only compatible with models that are capable of function calling: ChatOpenAI, ChatMistral, ChatAnthropic, ChatGoogleGenerativeAI, ChatVertexAI, GroqChat' }, { label: 'Chat Prompt Template', name: 'chatPromptTemplate', type: 'ChatPromptTemplate', description: 'Override existing prompt with Chat Prompt Template. Human Message must includes {input} variable', optional: true }, { label: 'System Message', name: 'systemMessage', type: 'string', default: `You are a helpful AI assistant.`, description: 'If Chat Prompt Template is provided, this will be ignored', rows: 4, optional: true, additionalParams: true }, { label: 'Input Moderation', description: 'Detect text that could generate harmful output and prevent it from being sent to the language model', name: 'inputModeration', type: 'Moderation', optional: true, list: true }, { label: 'Max Iterations', name: 'maxIterations', type: 'number', optional: true, additionalParams: true }, { label: 'Enable Detailed Streaming', name: 'enableDetailedStreaming', type: 'boolean', default: false, description: 'Stream detailed intermediate steps during agent execution', optional: true, additionalParams: true } ] this.sessionId = fields?.sessionId } async init(nodeData: INodeData, input: string, options: ICommonObject): Promise { return prepareAgent(nodeData, options, { sessionId: this.sessionId, chatId: options.chatId, input }) } async run(nodeData: INodeData, input: string, options: ICommonObject): Promise { const memory = nodeData.inputs?.memory as FlowiseMemory const moderations = nodeData.inputs?.inputModeration as Moderation[] const enableDetailedStreaming = nodeData.inputs?.enableDetailedStreaming as boolean const shouldStreamResponse = options.shouldStreamResponse const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer const chatId = options.chatId if (moderations && moderations.length > 0) { try { // Use the output of the moderation chain as input for the OpenAI Function Agent input = await checkInputs(moderations, input) } catch (e) { await new Promise((resolve) => setTimeout(resolve, 500)) if (shouldStreamResponse) { streamResponse(sseStreamer, chatId, e.message) } return formatResponse(e.message) } } const executor = await prepareAgent(nodeData, options, { sessionId: this.sessionId, chatId: options.chatId, input }) const loggerHandler = new ConsoleCallbackHandler(options.logger) const callbacks = await additionalCallbacks(nodeData, options) // Add custom streaming handler if detailed streaming is enabled let customStreamingHandler = null if (enableDetailedStreaming && shouldStreamResponse) { customStreamingHandler = new CustomStreamingHandler(sseStreamer, chatId) } let res: ChainValues = {} let sourceDocuments: ICommonObject[] = [] let usedTools: IUsedTool[] = [] let artifacts = [] if (shouldStreamResponse) { const handler = new CustomChainHandler(sseStreamer, chatId) const allCallbacks = [loggerHandler, handler, ...callbacks] // Add detailed streaming handler if enabled if (enableDetailedStreaming && customStreamingHandler) { allCallbacks.push(customStreamingHandler) } res = await executor.invoke({ input }, { callbacks: allCallbacks }) if (res.sourceDocuments) { if (sseStreamer) { sseStreamer.streamSourceDocumentsEvent(chatId, flatten(res.sourceDocuments)) } sourceDocuments = res.sourceDocuments } if (res.usedTools) { if (sseStreamer) { sseStreamer.streamUsedToolsEvent(chatId, flatten(res.usedTools)) } usedTools = res.usedTools } if (res.artifacts) { if (sseStreamer) { sseStreamer.streamArtifactsEvent(chatId, flatten(res.artifacts)) } artifacts = res.artifacts } // If the tool is set to returnDirect, stream the output to the client if (res.usedTools && res.usedTools.length) { let inputTools = nodeData.inputs?.tools inputTools = flatten(inputTools) for (const tool of res.usedTools) { const inputTool = inputTools.find((inputTool: Tool) => inputTool.name === tool.tool) if (inputTool && inputTool.returnDirect && shouldStreamResponse) { sseStreamer.streamTokenEvent(chatId, tool.toolOutput) } } } } else { const allCallbacks = [loggerHandler, ...callbacks] // Add detailed streaming handler if enabled if (enableDetailedStreaming && customStreamingHandler) { allCallbacks.push(customStreamingHandler) } res = await executor.invoke({ input }, { callbacks: allCallbacks }) if (res.sourceDocuments) { sourceDocuments = res.sourceDocuments } if (res.usedTools) { usedTools = res.usedTools } if (res.artifacts) { artifacts = res.artifacts } } let output = res?.output output = extractOutputFromArray(res?.output) output = removeInvalidImageMarkdown(output) // Claude 3 Opus tends to spit out .. as well, discard that in final output // https://docs.anthropic.com/en/docs/build-with-claude/tool-use#chain-of-thought const regexPattern: RegExp = /[\s\S]*?<\/thinking>/ const matches: RegExpMatchArray | null = output.match(regexPattern) if (matches) { for (const match of matches) { output = output.replace(match, '') } } await memory.addChatMessages( [ { text: input, type: 'userMessage' }, { text: output, type: 'apiMessage' } ], this.sessionId ) let finalRes = output if (sourceDocuments.length || usedTools.length || artifacts.length) { const finalRes: ICommonObject = { text: output } if (sourceDocuments.length) { finalRes.sourceDocuments = flatten(sourceDocuments) } if (usedTools.length) { finalRes.usedTools = usedTools } if (artifacts.length) { finalRes.artifacts = artifacts } return finalRes } return finalRes } } const prepareAgent = async ( nodeData: INodeData, options: ICommonObject, flowObj: { sessionId?: string; chatId?: string; input?: string } ) => { const model = nodeData.inputs?.model as BaseChatModel const maxIterations = nodeData.inputs?.maxIterations as string const memory = nodeData.inputs?.memory as FlowiseMemory let systemMessage = nodeData.inputs?.systemMessage as string let tools = nodeData.inputs?.tools tools = flatten(tools) const memoryKey = memory.memoryKey ? memory.memoryKey : 'chat_history' const inputKey = memory.inputKey ? memory.inputKey : 'input' const prependMessages = options?.prependMessages systemMessage = transformBracesWithColon(systemMessage) let prompt = ChatPromptTemplate.fromMessages([ ['system', systemMessage], new MessagesPlaceholder(memoryKey), ['human', `{${inputKey}}`], new MessagesPlaceholder('agent_scratchpad') ]) let promptVariables = {} const chatPromptTemplate = nodeData.inputs?.chatPromptTemplate as ChatPromptTemplate if (chatPromptTemplate && chatPromptTemplate.promptMessages.length) { const humanPrompt = chatPromptTemplate.promptMessages[chatPromptTemplate.promptMessages.length - 1] const messages = [ ...chatPromptTemplate.promptMessages.slice(0, -1), new MessagesPlaceholder(memoryKey), humanPrompt, new MessagesPlaceholder('agent_scratchpad') ] prompt = ChatPromptTemplate.fromMessages(messages) if ((chatPromptTemplate as any).promptValues) { const promptValuesRaw = (chatPromptTemplate as any).promptValues const promptValues = handleEscapeCharacters(promptValuesRaw, true) for (const val in promptValues) { promptVariables = { ...promptVariables, [val]: () => { return promptValues[val] } } } } } if (llmSupportsVision(model)) { const visionChatModel = model as IVisionChatModal const messageContent = await addImagesToMessages(nodeData, options, model.multiModalOption) if (messageContent?.length) { visionChatModel.setVisionModel() // Pop the `agent_scratchpad` MessagePlaceHolder let messagePlaceholder = prompt.promptMessages.pop() as MessagesPlaceholder if (prompt.promptMessages.at(-1) instanceof HumanMessagePromptTemplate) { const lastMessage = prompt.promptMessages.pop() as HumanMessagePromptTemplate const template = (lastMessage.prompt as PromptTemplate).template as string const msg = HumanMessagePromptTemplate.fromTemplate([ ...messageContent, { text: template } ]) msg.inputVariables = lastMessage.inputVariables prompt.promptMessages.push(msg) } // Add the `agent_scratchpad` MessagePlaceHolder back prompt.promptMessages.push(messagePlaceholder) } else { visionChatModel.revertToOriginalModel() } } if (model.bindTools === undefined) { throw new Error(`This agent requires that the "bindTools()" method be implemented on the input model.`) } const modelWithTools = model.bindTools(tools) const runnableAgent = RunnableSequence.from([ { [inputKey]: (i: { input: string; steps: ToolsAgentStep[] }) => i.input, agent_scratchpad: (i: { input: string; steps: ToolsAgentStep[] }) => formatToOpenAIToolMessages(i.steps), [memoryKey]: async (_: { input: string; steps: ToolsAgentStep[] }) => { const messages = (await memory.getChatMessages(flowObj?.sessionId, true, prependMessages)) as BaseMessage[] return messages ?? [] }, ...promptVariables }, prompt, modelWithTools, new ToolCallingAgentOutputParser() ]) const executor = AgentExecutor.fromAgentAndTools({ agent: runnableAgent, tools, sessionId: flowObj?.sessionId, chatId: flowObj?.chatId, input: flowObj?.input, verbose: process.env.DEBUG === 'true', maxIterations: maxIterations ? parseFloat(maxIterations) : undefined }) return executor } module.exports = { nodeClass: ToolAgent_Agents }