import { BaseLanguageModel } from '@langchain/core/language_models/base' import { MultiRetrievalQAChain } from 'langchain/chains' import { ICommonObject, INode, INodeData, INodeParams, IServerSideEventStreamer, VectorStoreRetriever } from '../../../src/Interface' import { getBaseClasses } from '../../../src/utils' import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler' import { checkInputs, Moderation, streamResponse } from '../../moderation/Moderation' import { formatResponse } from '../../outputparsers/OutputParserHelpers' class MultiRetrievalQAChain_Chains implements INode { label: string name: string version: number type: string icon: string category: string baseClasses: string[] description: string badge: string inputs: INodeParams[] constructor() { this.label = 'Multi Retrieval QA Chain' this.name = 'multiRetrievalQAChain' this.version = 2.0 this.badge = 'DEPRECATING' this.type = 'MultiRetrievalQAChain' this.icon = 'qa.svg' this.category = 'Chains' this.description = 'QA Chain that automatically picks an appropriate vector store from multiple retrievers' this.baseClasses = [this.type, ...getBaseClasses(MultiRetrievalQAChain)] this.inputs = [ { label: 'Language Model', name: 'model', type: 'BaseLanguageModel' }, { label: 'Vector Store Retriever', name: 'vectorStoreRetriever', type: 'VectorStoreRetriever', list: true }, { label: 'Return Source Documents', name: 'returnSourceDocuments', type: 'boolean', optional: true }, { label: 'Input Moderation', description: 'Detect text that could generate harmful output and prevent it from being sent to the language model', name: 'inputModeration', type: 'Moderation', optional: true, list: true } ] } async init(nodeData: INodeData): Promise { const model = nodeData.inputs?.model as BaseLanguageModel const vectorStoreRetriever = nodeData.inputs?.vectorStoreRetriever as VectorStoreRetriever[] const returnSourceDocuments = nodeData.inputs?.returnSourceDocuments as boolean const retrieverNames = [] const retrieverDescriptions = [] const retrievers = [] for (const vs of vectorStoreRetriever) { retrieverNames.push(vs.name) retrieverDescriptions.push(vs.description) retrievers.push(vs.vectorStore.asRetriever((vs.vectorStore as any).k ?? 4)) } const chain = MultiRetrievalQAChain.fromLLMAndRetrievers(model, { retrieverNames, retrieverDescriptions, retrievers, retrievalQAChainOpts: { verbose: process.env.DEBUG === 'true' ? true : false, returnSourceDocuments } }) return chain } async run(nodeData: INodeData, input: string, options: ICommonObject): Promise { const chain = nodeData.instance as MultiRetrievalQAChain const returnSourceDocuments = nodeData.inputs?.returnSourceDocuments as boolean const moderations = nodeData.inputs?.inputModeration as Moderation[] const shouldStreamResponse = options.shouldStreamResponse const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer const chatId = options.chatId if (moderations && moderations.length > 0) { try { // Use the output of the moderation chain as input for the Multi Retrieval QA Chain input = await checkInputs(moderations, input) } catch (e) { await new Promise((resolve) => setTimeout(resolve, 500)) if (options.shouldStreamResponse) { streamResponse(options.sseStreamer, options.chatId, e.message) } return formatResponse(e.message) } } const obj = { input } const loggerHandler = new ConsoleCallbackHandler(options.logger, options?.orgId) const callbacks = await additionalCallbacks(nodeData, options) if (shouldStreamResponse) { const handler = new CustomChainHandler(sseStreamer, chatId, 2, returnSourceDocuments) const res = await chain.call(obj, [loggerHandler, handler, ...callbacks]) if (res.text && res.sourceDocuments) return res return res?.text } else { const res = await chain.call(obj, [loggerHandler, ...callbacks]) if (res.text && res.sourceDocuments) return res return res?.text } } } module.exports = { nodeClass: MultiRetrievalQAChain_Chains }