import { flatten } from 'lodash' import { BaseMessage } from '@langchain/core/messages' import { ChainValues } from '@langchain/core/utils/types' import { AgentStep } from '@langchain/core/agents' import { RunnableSequence } from '@langchain/core/runnables' import { ChatOpenAI, formatToOpenAIFunction } from '@langchain/openai' import { ChatPromptTemplate, MessagesPlaceholder } from '@langchain/core/prompts' import { OpenAIFunctionsAgentOutputParser } from 'langchain/agents/openai/output_parser' import { FlowiseMemory, ICommonObject, IMessage, INode, INodeData, INodeParams } from '../../../src/Interface' import { getBaseClasses } from '../../../src/utils' import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler' import { AgentExecutor, formatAgentSteps } from '../../../src/agents' import { checkInputs, Moderation } from '../../moderation/Moderation' import { formatResponse } from '../../outputparsers/OutputParserHelpers' const defaultMessage = `Do your best to answer the questions. Feel free to use any tools available to look up relevant information, only if necessary.` class ConversationalRetrievalAgent_Agents implements INode { label: string name: string version: number description: string type: string icon: string category: string baseClasses: string[] inputs: INodeParams[] badge?: string sessionId?: string constructor(fields?: { sessionId?: string }) { this.label = 'Conversational Retrieval Agent' this.name = 'conversationalRetrievalAgent' this.version = 4.0 this.type = 'AgentExecutor' this.category = 'Agents' this.badge = 'DEPRECATING' this.icon = 'agent.svg' this.description = `An agent optimized for retrieval during conversation, answering questions based on past dialogue, all using OpenAI's Function Calling` this.baseClasses = [this.type, ...getBaseClasses(AgentExecutor)] this.inputs = [ { label: 'Allowed Tools', name: 'tools', type: 'Tool', list: true }, { label: 'Memory', name: 'memory', type: 'BaseChatMemory' }, { label: 'OpenAI/Azure Chat Model', name: 'model', type: 'BaseChatModel' }, { label: 'System Message', name: 'systemMessage', type: 'string', default: defaultMessage, rows: 4, optional: true, additionalParams: true }, { label: 'Input Moderation', description: 'Detect text that could generate harmful output and prevent it from being sent to the language model', name: 'inputModeration', type: 'Moderation', optional: true, list: true } ] this.sessionId = fields?.sessionId } async init(nodeData: INodeData, input: string, options: ICommonObject): Promise { return prepareAgent(nodeData, { sessionId: this.sessionId, chatId: options.chatId, input }, options.chatHistory) } async run(nodeData: INodeData, input: string, options: ICommonObject): Promise { const memory = nodeData.inputs?.memory as FlowiseMemory const moderations = nodeData.inputs?.inputModeration as Moderation[] if (moderations && moderations.length > 0) { try { // Use the output of the moderation chain as input for the BabyAGI agent input = await checkInputs(moderations, input) } catch (e) { await new Promise((resolve) => setTimeout(resolve, 500)) //streamResponse(options.socketIO && options.socketIOClientId, e.message, options.socketIO, options.socketIOClientId) return formatResponse(e.message) } } const executor = prepareAgent(nodeData, { sessionId: this.sessionId, chatId: options.chatId, input }, options.chatHistory) const loggerHandler = new ConsoleCallbackHandler(options.logger) const callbacks = await additionalCallbacks(nodeData, options) let res: ChainValues = {} if (options.socketIO && options.socketIOClientId) { const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId) res = await executor.invoke({ input }, { callbacks: [loggerHandler, handler, ...callbacks] }) } else { res = await executor.invoke({ input }, { callbacks: [loggerHandler, ...callbacks] }) } await memory.addChatMessages( [ { text: input, type: 'userMessage' }, { text: res?.output, type: 'apiMessage' } ], this.sessionId ) return res?.output } } const prepareAgent = ( nodeData: INodeData, flowObj: { sessionId?: string; chatId?: string; input?: string }, chatHistory: IMessage[] = [] ) => { const model = nodeData.inputs?.model as ChatOpenAI const memory = nodeData.inputs?.memory as FlowiseMemory const systemMessage = nodeData.inputs?.systemMessage as string let tools = nodeData.inputs?.tools tools = flatten(tools) const memoryKey = memory.memoryKey ? memory.memoryKey : 'chat_history' const inputKey = memory.inputKey ? memory.inputKey : 'input' const prompt = ChatPromptTemplate.fromMessages([ ['ai', systemMessage ? systemMessage : defaultMessage], new MessagesPlaceholder(memoryKey), ['human', `{${inputKey}}`], new MessagesPlaceholder('agent_scratchpad') ]) const modelWithFunctions = model.bind({ functions: [...tools.map((tool: any) => formatToOpenAIFunction(tool))] }) const runnableAgent = RunnableSequence.from([ { [inputKey]: (i: { input: string; steps: AgentStep[] }) => i.input, agent_scratchpad: (i: { input: string; steps: AgentStep[] }) => formatAgentSteps(i.steps), [memoryKey]: async (_: { input: string; steps: AgentStep[] }) => { const messages = (await memory.getChatMessages(flowObj?.sessionId, true, chatHistory)) as BaseMessage[] return messages ?? [] } }, prompt, modelWithFunctions, new OpenAIFunctionsAgentOutputParser() ]) const executor = AgentExecutor.fromAgentAndTools({ agent: runnableAgent, tools, sessionId: flowObj?.sessionId, chatId: flowObj?.chatId, input: flowObj?.input, returnIntermediateSteps: true, verbose: process.env.DEBUG === 'true' ? true : false }) return executor } module.exports = { nodeClass: ConversationalRetrievalAgent_Agents }