import { flatten } from 'lodash' import { MongoClient } from 'mongodb' import { MongoDBAtlasVectorSearch } from 'langchain/vectorstores/mongodb_atlas' import { Embeddings } from 'langchain/embeddings/base' import { Document } from 'langchain/document' import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils' class MongoDBAtlas_VectorStores implements INode { label: string name: string version: number description: string type: string icon: string category: string badge: string baseClasses: string[] inputs: INodeParams[] credential: INodeParams outputs: INodeOutputsValue[] constructor() { this.label = 'MongoDB Atlas' this.name = 'mongoDBAtlas' this.version = 1.0 this.description = `Upsert embedded data and perform similarity search upon query using MongoDB Atlas, a managed cloud mongodb database` this.type = 'MongoDB Atlas' this.icon = 'mongodb.png' this.category = 'Vector Stores' this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever'] this.badge = 'NEW' this.credential = { label: 'Connect Credential', name: 'credential', type: 'credential', credentialNames: ['mongoDBUrlApi'] } this.inputs = [ { label: 'Document', name: 'document', type: 'Document', list: true, optional: true }, { label: 'Embeddings', name: 'embeddings', type: 'Embeddings' }, { label: 'Database', name: 'databaseName', placeholder: '', type: 'string' }, { label: 'Collection Name', name: 'collectionName', placeholder: '', type: 'string' }, { label: 'Index Name', name: 'indexName', placeholder: '', type: 'string' }, { label: 'Content Field', name: 'textKey', description: 'Name of the field (column) that contains the actual content', type: 'string', default: 'text', additionalParams: true, optional: true }, { label: 'Embedded Field', name: 'embeddingKey', description: 'Name of the field (column) that contains the Embedding', type: 'string', default: 'embedding', additionalParams: true, optional: true }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to 4', placeholder: '4', type: 'number', additionalParams: true, optional: true } ] this.outputs = [ { label: 'MongoDB Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'MongoDB Vector Store', name: 'vectorStore', baseClasses: [this.type, ...getBaseClasses(MongoDBAtlasVectorSearch)] } ] } //@ts-ignore vectorStoreMethods = { async upsert(nodeData: INodeData, options: ICommonObject): Promise { const credentialData = await getCredentialData(nodeData.credential ?? '', options) const databaseName = nodeData.inputs?.databaseName as string const collectionName = nodeData.inputs?.collectionName as string const indexName = nodeData.inputs?.indexName as string let textKey = nodeData.inputs?.textKey as string let embeddingKey = nodeData.inputs?.embeddingKey as string const embeddings = nodeData.inputs?.embeddings as Embeddings let mongoDBConnectUrl = getCredentialParam('mongoDBConnectUrl', credentialData, nodeData) const docs = nodeData.inputs?.document as Document[] const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { if (flattenDocs[i] && flattenDocs[i].pageContent) { const document = new Document(flattenDocs[i]) finalDocs.push(document) } } const mongoClient = new MongoClient(mongoDBConnectUrl) const collection = mongoClient.db(databaseName).collection(collectionName) if (!textKey || textKey === '') textKey = 'text' if (!embeddingKey || embeddingKey === '') embeddingKey = 'embedding' const mongoDBAtlasVectorSearch = new MongoDBAtlasVectorSearch(embeddings, { collection, indexName, textKey, embeddingKey }) try { await mongoDBAtlasVectorSearch.addDocuments(finalDocs) } catch (e) { throw new Error(e) } } } async init(nodeData: INodeData, _: string, options: ICommonObject): Promise { const credentialData = await getCredentialData(nodeData.credential ?? '', options) const databaseName = nodeData.inputs?.databaseName as string const collectionName = nodeData.inputs?.collectionName as string const indexName = nodeData.inputs?.indexName as string let textKey = nodeData.inputs?.textKey as string let embeddingKey = nodeData.inputs?.embeddingKey as string const embeddings = nodeData.inputs?.embeddings as Embeddings const topK = nodeData.inputs?.topK as string const k = topK ? parseFloat(topK) : 4 const output = nodeData.outputs?.output as string let mongoDBConnectUrl = getCredentialParam('mongoDBConnectUrl', credentialData, nodeData) const mongoClient = new MongoClient(mongoDBConnectUrl) const collection = mongoClient.db(databaseName).collection(collectionName) if (!textKey || textKey === '') textKey = 'text' if (!embeddingKey || embeddingKey === '') embeddingKey = 'embedding' const vectorStore = new MongoDBAtlasVectorSearch(embeddings, { collection, indexName, textKey, embeddingKey }) if (output === 'retriever') { return vectorStore.asRetriever(k) } else if (output === 'vectorStore') { ;(vectorStore as any).k = k return vectorStore } return vectorStore } } module.exports = { nodeClass: MongoDBAtlas_VectorStores }