import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' import { FaissStore } from 'langchain/vectorstores/faiss' import { Embeddings } from 'langchain/embeddings/base' import { getBaseClasses } from '../../../src/utils' import { Document } from 'langchain/document' class Faiss_Existing_VectorStores implements INode { label: string name: string version: number description: string type: string icon: string category: string badge: string baseClasses: string[] inputs: INodeParams[] outputs: INodeOutputsValue[] constructor() { this.label = 'Faiss Load Existing Index' this.name = 'faissExistingIndex' this.version = 1.0 this.type = 'Faiss' this.icon = 'faiss.svg' this.category = 'Vector Stores' this.description = 'Load existing index from Faiss (i.e: Document has been upserted)' this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever'] this.badge = 'DEPRECATING' this.inputs = [ { label: 'Embeddings', name: 'embeddings', type: 'Embeddings' }, { label: 'Base Path to load', name: 'basePath', description: 'Path to load faiss.index file', placeholder: `C:\\Users\\User\\Desktop`, type: 'string' }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to 4', placeholder: '4', type: 'number', additionalParams: true, optional: true } ] this.outputs = [ { label: 'Faiss Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Faiss Vector Store', name: 'vectorStore', baseClasses: [this.type, ...getBaseClasses(FaissStore)] } ] } async init(nodeData: INodeData): Promise { const embeddings = nodeData.inputs?.embeddings as Embeddings const basePath = nodeData.inputs?.basePath as string const output = nodeData.outputs?.output as string const topK = nodeData.inputs?.topK as string const k = topK ? parseFloat(topK) : 4 const vectorStore = await FaissStore.load(basePath, embeddings) // Avoid illegal invocation error vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number) => { const index = vectorStore.index if (k > index.ntotal()) { const total = index.ntotal() console.warn(`k (${k}) is greater than the number of elements in the index (${total}), setting k to ${total}`) k = total } const result = index.search(query, k) return result.labels.map((id, index) => { const uuid = vectorStore._mapping[id] return [vectorStore.docstore.search(uuid), result.distances[index]] as [Document, number] }) } if (output === 'retriever') { const retriever = vectorStore.asRetriever(k) return retriever } else if (output === 'vectorStore') { ;(vectorStore as any).k = k return vectorStore } return vectorStore } } module.exports = { nodeClass: Faiss_Existing_VectorStores }