import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface' import { Embeddings } from 'langchain/embeddings/base' import { Document } from 'langchain/document' import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src' import { Client, ClientOptions } from '@elastic/elasticsearch' import { ElasticClientArgs, ElasticVectorSearch } from 'langchain/vectorstores/elasticsearch' import { flatten } from 'lodash' class ElasicsearchUpsert_VectorStores implements INode { label: string name: string version: number description: string type: string icon: string category: string baseClasses: string[] inputs: INodeParams[] credential: INodeParams outputs: INodeOutputsValue[] constructor() { this.label = 'Elasticsearch Upsert Document' this.name = 'ElasticsearchUpsert' this.version = 1.0 this.type = 'Elasticsearch' this.icon = 'elasticsearch.png' this.category = 'Vector Stores' this.description = 'Upsert documents to Elasticsearch' this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever'] this.credential = { label: 'Connect Credential', name: 'credential', type: 'credential', credentialNames: ['elasticsearchApi', 'elasticSearchUserPassword'] } this.inputs = [ { label: 'Document', name: 'document', type: 'Document', list: true }, { label: 'Embeddings', name: 'embeddings', type: 'Embeddings' }, { label: 'Index Name', name: 'indexName', placeholder: '', type: 'string' }, { label: 'Top K', name: 'topK', description: 'Number of top results to fetch. Default to 4', placeholder: '4', type: 'number', additionalParams: true, optional: true }, { label: 'Similarity', name: 'similarity', description: 'Similarity measure used in Elasticsearch.', type: 'options', default: 'l2_norm', options: [ { label: 'l2_norm', name: 'l2_norm' }, { label: 'dot_product', name: 'dot_product' }, { label: 'cosine', name: 'cosine' } ], additionalParams: true, optional: true } ] this.outputs = [ { label: 'Elasticsearch Retriever', name: 'retriever', baseClasses: this.baseClasses }, { label: 'Elasticsearch Vector Store', name: 'vectorStore', baseClasses: [this.type, ...getBaseClasses(ElasticVectorSearch)] } ] } async init(nodeData: INodeData, _: string, options: ICommonObject): Promise { const credentialData = await getCredentialData(nodeData.credential ?? '', options) const endPoint = getCredentialParam('endpoint', credentialData, nodeData) const apiKey = getCredentialParam('apiKey', credentialData, nodeData) const docs = nodeData.inputs?.document as Document[] const indexName = nodeData.inputs?.indexName as string const embeddings = nodeData.inputs?.embeddings as Embeddings const topK = nodeData.inputs?.topK as string const k = topK ? parseFloat(topK) : 4 const output = nodeData.outputs?.output as string const similarityMeasure = nodeData.inputs?.similarityMeasure as string // eslint-disable-next-line no-console console.log('EndPoint:: ' + endPoint + ', APIKey:: ' + apiKey + ', Index:: ' + indexName) const elasticSearchClientOptions: ClientOptions = { node: endPoint, auth: { apiKey: apiKey } } let vectorSearchOptions = {} switch (similarityMeasure) { case 'dot_product': vectorSearchOptions = { similarity: 'dot_product' } break case 'cosine': vectorSearchOptions = { similarity: 'cosine' } break default: vectorSearchOptions = { similarity: 'l2_norm' } } const elasticSearchClientArgs: ElasticClientArgs = { client: new Client(elasticSearchClientOptions), indexName: indexName, vectorSearchOptions: vectorSearchOptions } const flattenDocs = docs && docs.length ? flatten(docs) : [] const finalDocs = [] for (let i = 0; i < flattenDocs.length; i += 1) { finalDocs.push(new Document(flattenDocs[i])) } const vectorStore = await ElasticVectorSearch.fromDocuments(finalDocs, embeddings, elasticSearchClientArgs) if (output === 'retriever') { return vectorStore.asRetriever(k) } else if (output === 'vectorStore') { ;(vectorStore as any).k = k return vectorStore } return vectorStore } } module.exports = { nodeClass: ElasicsearchUpsert_VectorStores }