Flowise/packages/components/nodes/retrievers/RRFRetriever/RRFRetriever.ts

138 lines
5.1 KiB
TypeScript

import { BaseLanguageModel } from '@langchain/core/language_models/base'
import { BaseRetriever } from '@langchain/core/retrievers'
import { VectorStoreRetriever } from '@langchain/core/vectorstores'
import { ContextualCompressionRetriever } from 'langchain/retrievers/contextual_compression'
import { ReciprocalRankFusion } from './ReciprocalRankFusion'
import { handleEscapeCharacters } from '../../../src/utils'
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
class RRFRetriever_Retrievers implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
badge: string
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Reciprocal Rank Fusion Retriever'
this.name = 'RRFRetriever'
this.version = 1.0
this.type = 'RRFRetriever'
this.icon = 'rrfRetriever.svg'
this.category = 'Retrievers'
this.description = 'Reciprocal Rank Fusion to re-rank search results by multiple query generation.'
this.baseClasses = [this.type, 'BaseRetriever']
this.inputs = [
{
label: 'Vector Store Retriever',
name: 'baseRetriever',
type: 'VectorStoreRetriever'
},
{
label: 'Language Model',
name: 'model',
type: 'BaseLanguageModel'
},
{
label: 'Query',
name: 'query',
type: 'string',
description: 'Query to retrieve documents from retriever. If not specified, user question will be used',
optional: true,
acceptVariable: true
},
{
label: 'Query Count',
name: 'queryCount',
description: 'Number of synthetic queries to generate. Default to 4',
placeholder: '4',
type: 'number',
default: 4,
additionalParams: true,
optional: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to the TopK of the Base Retriever',
placeholder: '0',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Constant',
name: 'c',
description:
'A constant added to the rank, controlling the balance between the importance of high-ranked items and the consideration given to lower-ranked items.\n' +
'Default is 60',
placeholder: '60',
type: 'number',
default: 60,
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Reciprocal Rank Fusion Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Document',
name: 'document',
description: 'Array of document objects containing metadata and pageContent',
baseClasses: ['Document', 'json']
},
{
label: 'Text',
name: 'text',
description: 'Concatenated string from pageContent of documents',
baseClasses: ['string', 'json']
}
]
}
async init(nodeData: INodeData, input: string): Promise<any> {
const llm = nodeData.inputs?.model as BaseLanguageModel
const baseRetriever = nodeData.inputs?.baseRetriever as BaseRetriever
const query = nodeData.inputs?.query as string
const queryCount = nodeData.inputs?.queryCount as string
const q = queryCount ? parseFloat(queryCount) : 4
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : (baseRetriever as VectorStoreRetriever).k ?? 4
const constantC = nodeData.inputs?.c as string
const c = topK ? parseFloat(constantC) : 60
const output = nodeData.outputs?.output as string
const ragFusion = new ReciprocalRankFusion(llm, baseRetriever as VectorStoreRetriever, q, k, c)
const retriever = new ContextualCompressionRetriever({
baseCompressor: ragFusion,
baseRetriever: baseRetriever
})
if (output === 'retriever') return retriever
else if (output === 'document') return await retriever.getRelevantDocuments(query ? query : input)
else if (output === 'text') {
let finaltext = ''
const docs = await retriever.getRelevantDocuments(query ? query : input)
for (const doc of docs) finaltext += `${doc.pageContent}\n`
return handleEscapeCharacters(finaltext, false)
}
return retriever
}
}
module.exports = { nodeClass: RRFRetriever_Retrievers }