138 lines
5.1 KiB
TypeScript
138 lines
5.1 KiB
TypeScript
import { BaseLanguageModel } from '@langchain/core/language_models/base'
|
|
import { BaseRetriever } from '@langchain/core/retrievers'
|
|
import { VectorStoreRetriever } from '@langchain/core/vectorstores'
|
|
import { ContextualCompressionRetriever } from 'langchain/retrievers/contextual_compression'
|
|
import { ReciprocalRankFusion } from './ReciprocalRankFusion'
|
|
import { handleEscapeCharacters } from '../../../src/utils'
|
|
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
|
|
class RRFRetriever_Retrievers implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
badge: string
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Reciprocal Rank Fusion Retriever'
|
|
this.name = 'RRFRetriever'
|
|
this.version = 1.0
|
|
this.type = 'RRFRetriever'
|
|
this.icon = 'rrfRetriever.svg'
|
|
this.category = 'Retrievers'
|
|
this.description = 'Reciprocal Rank Fusion to re-rank search results by multiple query generation.'
|
|
this.baseClasses = [this.type, 'BaseRetriever']
|
|
this.inputs = [
|
|
{
|
|
label: 'Vector Store Retriever',
|
|
name: 'baseRetriever',
|
|
type: 'VectorStoreRetriever'
|
|
},
|
|
{
|
|
label: 'Language Model',
|
|
name: 'model',
|
|
type: 'BaseLanguageModel'
|
|
},
|
|
{
|
|
label: 'Query',
|
|
name: 'query',
|
|
type: 'string',
|
|
description: 'Query to retrieve documents from retriever. If not specified, user question will be used',
|
|
optional: true,
|
|
acceptVariable: true
|
|
},
|
|
{
|
|
label: 'Query Count',
|
|
name: 'queryCount',
|
|
description: 'Number of synthetic queries to generate. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
default: 4,
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to the TopK of the Base Retriever',
|
|
placeholder: '0',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Constant',
|
|
name: 'c',
|
|
description:
|
|
'A constant added to the rank, controlling the balance between the importance of high-ranked items and the consideration given to lower-ranked items.\n' +
|
|
'Default is 60',
|
|
placeholder: '60',
|
|
type: 'number',
|
|
default: 60,
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Reciprocal Rank Fusion Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
description: 'Array of document objects containing metadata and pageContent',
|
|
baseClasses: ['Document', 'json']
|
|
},
|
|
{
|
|
label: 'Text',
|
|
name: 'text',
|
|
description: 'Concatenated string from pageContent of documents',
|
|
baseClasses: ['string', 'json']
|
|
}
|
|
]
|
|
}
|
|
|
|
async init(nodeData: INodeData, input: string): Promise<any> {
|
|
const llm = nodeData.inputs?.model as BaseLanguageModel
|
|
const baseRetriever = nodeData.inputs?.baseRetriever as BaseRetriever
|
|
const query = nodeData.inputs?.query as string
|
|
const queryCount = nodeData.inputs?.queryCount as string
|
|
const q = queryCount ? parseFloat(queryCount) : 4
|
|
const topK = nodeData.inputs?.topK as string
|
|
const k = topK ? parseFloat(topK) : (baseRetriever as VectorStoreRetriever).k ?? 4
|
|
const constantC = nodeData.inputs?.c as string
|
|
const c = topK ? parseFloat(constantC) : 60
|
|
const output = nodeData.outputs?.output as string
|
|
|
|
const ragFusion = new ReciprocalRankFusion(llm, baseRetriever as VectorStoreRetriever, q, k, c)
|
|
const retriever = new ContextualCompressionRetriever({
|
|
baseCompressor: ragFusion,
|
|
baseRetriever: baseRetriever
|
|
})
|
|
|
|
if (output === 'retriever') return retriever
|
|
else if (output === 'document') return await retriever.getRelevantDocuments(query ? query : input)
|
|
else if (output === 'text') {
|
|
let finaltext = ''
|
|
|
|
const docs = await retriever.getRelevantDocuments(query ? query : input)
|
|
|
|
for (const doc of docs) finaltext += `${doc.pageContent}\n`
|
|
|
|
return handleEscapeCharacters(finaltext, false)
|
|
}
|
|
|
|
return retriever
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: RRFRetriever_Retrievers }
|