Flowise/packages/components/nodes/chatmodels/Groq/ChatGroq_LlamaIndex.ts

89 lines
2.9 KiB
TypeScript

import { ICommonObject, INode, INodeData, INodeOptionsValue, INodeParams } from '../../../src/Interface'
import { MODEL_TYPE, getModels } from '../../../src/modelLoader'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { Groq, OpenAI } from 'llamaindex'
class ChatGroq_LlamaIndex_ChatModels implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
description: string
tags: string[]
baseClasses: string[]
credential: INodeParams
inputs: INodeParams[]
constructor() {
this.label = 'ChatGroq'
this.name = 'chatGroq_LlamaIndex'
this.version = 1.0
this.type = 'ChatGroq'
this.icon = 'groq.png'
this.category = 'Chat Models'
this.description = 'Wrapper around Groq LLM specific for LlamaIndex'
this.baseClasses = [this.type, 'BaseChatModel_LlamaIndex', ...getBaseClasses(Groq)]
this.tags = ['LlamaIndex']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['groqApi'],
optional: true
}
this.inputs = [
{
label: 'Model Name',
name: 'modelName',
type: 'asyncOptions',
loadMethod: 'listModels',
placeholder: 'llama3-70b-8192'
},
{
label: 'Temperature',
name: 'temperature',
type: 'number',
step: 0.1,
default: 0.9,
optional: true
},
{
label: 'Max Tokens',
name: 'maxTokens',
type: 'number',
step: 1,
optional: true,
additionalParams: true
}
]
}
//@ts-ignore
loadMethods = {
async listModels(): Promise<INodeOptionsValue[]> {
return await getModels(MODEL_TYPE.CHAT, 'groqChat')
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const temperature = nodeData.inputs?.temperature as string
const modelName = nodeData.inputs?.modelName as string
const maxTokens = nodeData.inputs?.maxTokens as string
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const groqApiKey = getCredentialParam('groqApiKey', credentialData, nodeData)
const obj: Partial<OpenAI> = {
temperature: parseFloat(temperature),
model: modelName,
apiKey: groqApiKey
}
if (maxTokens) obj.maxTokens = parseInt(maxTokens, 10)
const model = new Groq(obj)
return model
}
}
module.exports = { nodeClass: ChatGroq_LlamaIndex_ChatModels }