Flowise/packages/components/nodes/retrievers/HydeRetriever/HydeRetriever.ts

191 lines
6.5 KiB
TypeScript

import { VectorStore } from 'langchain/vectorstores/base'
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { HydeRetriever, HydeRetrieverOptions, PromptKey } from 'langchain/retrievers/hyde'
import { BaseLanguageModel } from 'langchain/base_language'
import { PromptTemplate } from 'langchain/prompts'
import { handleEscapeCharacters } from '../../../src/utils'
class HydeRetriever_Retrievers implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]
constructor() {
this.label = 'HyDE Retriever'
this.name = 'HydeRetriever'
this.version = 3.0
this.type = 'HydeRetriever'
this.icon = 'hyderetriever.svg'
this.category = 'Retrievers'
this.description = 'Use HyDE retriever to retrieve from a vector store'
this.baseClasses = [this.type, 'BaseRetriever']
this.inputs = [
{
label: 'Language Model',
name: 'model',
type: 'BaseLanguageModel'
},
{
label: 'Vector Store',
name: 'vectorStore',
type: 'VectorStore'
},
{
label: 'Query',
name: 'query',
type: 'string',
description: 'Query to retrieve documents from retriever. If not specified, user question will be used',
optional: true,
acceptVariable: true
},
{
label: 'Select Defined Prompt',
name: 'promptKey',
description: 'Select a pre-defined prompt',
type: 'options',
options: [
{
label: 'websearch',
name: 'websearch',
description: `Please write a passage to answer the question
Question: {question}
Passage:`
},
{
label: 'scifact',
name: 'scifact',
description: `Please write a scientific paper passage to support/refute the claim
Claim: {question}
Passage:`
},
{
label: 'arguana',
name: 'arguana',
description: `Please write a counter argument for the passage
Passage: {question}
Counter Argument:`
},
{
label: 'trec-covid',
name: 'trec-covid',
description: `Please write a scientific paper passage to answer the question
Question: {question}
Passage:`
},
{
label: 'fiqa',
name: 'fiqa',
description: `Please write a financial article passage to answer the question
Question: {question}
Passage:`
},
{
label: 'dbpedia-entity',
name: 'dbpedia-entity',
description: `Please write a passage to answer the question.
Question: {question}
Passage:`
},
{
label: 'trec-news',
name: 'trec-news',
description: `Please write a news passage about the topic.
Topic: {question}
Passage:`
},
{
label: 'mr-tydi',
name: 'mr-tydi',
description: `Please write a passage in Swahili/Korean/Japanese/Bengali to answer the question in detail.
Question: {question}
Passage:`
}
],
default: 'websearch'
},
{
label: 'Custom Prompt',
name: 'customPrompt',
description: 'If custom prompt is used, this will override Defined Prompt',
placeholder: 'Please write a passage to answer the question\nQuestion: {question}\nPassage:',
type: 'string',
rows: 4,
additionalParams: true,
optional: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
default: 4,
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'HyDE Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Document',
name: 'document',
baseClasses: ['Document']
},
{
label: 'Text',
name: 'text',
baseClasses: ['string', 'json']
}
]
}
async init(nodeData: INodeData, input: string): Promise<any> {
const llm = nodeData.inputs?.model as BaseLanguageModel
const vectorStore = nodeData.inputs?.vectorStore as VectorStore
const promptKey = nodeData.inputs?.promptKey as PromptKey
const customPrompt = nodeData.inputs?.customPrompt as string
const query = nodeData.inputs?.query as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const output = nodeData.outputs?.output as string
const obj: HydeRetrieverOptions<any> = {
llm,
vectorStore,
k
}
if (customPrompt) obj.promptTemplate = PromptTemplate.fromTemplate(customPrompt)
else if (promptKey) obj.promptTemplate = promptKey
const retriever = new HydeRetriever(obj)
if (output === 'retriever') return retriever
else if (output === 'document') return await retriever.getRelevantDocuments(query ? query : input)
else if (output === 'text') {
let finaltext = ''
const docs = await retriever.getRelevantDocuments(query ? query : input)
for (const doc of docs) finaltext += `${doc.pageContent}\n`
return handleEscapeCharacters(finaltext, false)
}
return retriever
}
}
module.exports = { nodeClass: HydeRetriever_Retrievers }