Flowise/packages/components/nodes/retrievers/RRFRetriever/ReciprocalRankFusion.ts

97 lines
4.0 KiB
TypeScript

import { BaseDocumentCompressor } from 'langchain/retrievers/document_compressors'
import { Document } from 'langchain/document'
import { Callbacks } from 'langchain/callbacks'
import { BaseLanguageModel } from 'langchain/base_language'
import { ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate } from 'langchain/prompts'
import { LLMChain } from 'langchain/chains'
import { VectorStoreRetriever } from 'langchain/vectorstores/base'
export class ReciprocalRankFusion extends BaseDocumentCompressor {
private readonly llm: BaseLanguageModel
private readonly queryCount: number
private readonly topK: number
private readonly c: number
private baseRetriever: VectorStoreRetriever
constructor(llm: BaseLanguageModel, baseRetriever: VectorStoreRetriever, queryCount: number, topK: number, c: number) {
super()
this.queryCount = queryCount
this.llm = llm
this.baseRetriever = baseRetriever
this.topK = topK
this.c = c
}
async compressDocuments(
documents: Document<Record<string, any>>[],
query: string,
_?: Callbacks | undefined
): Promise<Document<Record<string, any>>[]> {
// avoid empty api call
if (documents.length === 0) {
return []
}
const chatPrompt = ChatPromptTemplate.fromMessages([
SystemMessagePromptTemplate.fromTemplate(
'You are a helpful assistant that generates multiple search queries based on a single input query.'
),
HumanMessagePromptTemplate.fromTemplate(
'Generate multiple search queries related to: {input}. Provide these alternative questions separated by newlines, do not add any numbers.'
),
HumanMessagePromptTemplate.fromTemplate('OUTPUT (' + this.queryCount + ' queries):')
])
const llmChain = new LLMChain({
llm: this.llm,
prompt: chatPrompt
})
const multipleQueries = await llmChain.call({ input: query })
const queries = []
queries.push(query)
multipleQueries.text.split('\n').map((q: string) => {
queries.push(q)
})
const docList: Document<Record<string, any>>[][] = []
for (let i = 0; i < queries.length; i++) {
const resultOne = await this.baseRetriever.vectorStore.similaritySearch(queries[i], 5)
const docs: any[] = []
resultOne.forEach((doc) => {
docs.push(doc)
})
docList.push(docs)
}
return this.reciprocalRankFunction(docList, this.c)
}
reciprocalRankFunction(docList: Document<Record<string, any>>[][], k: number): Document<Record<string, any>>[] {
docList.forEach((docs: Document<Record<string, any>>[]) => {
docs.forEach((doc: any, index: number) => {
let rank = index + 1
if (doc.metadata.relevancy_score) {
doc.metadata.relevancy_score += 1 / (rank + k)
} else {
doc.metadata.relevancy_score = 1 / (rank + k)
}
})
})
const scoreArray: any[] = []
docList.forEach((docs: Document<Record<string, any>>[]) => {
docs.forEach((doc: any) => {
scoreArray.push(doc.metadata.relevancy_score)
})
})
scoreArray.sort((a, b) => b - a)
const rerankedDocuments: Document<Record<string, any>>[] = []
const seenScores: any[] = []
scoreArray.forEach((score) => {
docList.forEach((docs) => {
docs.forEach((doc: any) => {
if (doc.metadata.relevancy_score === score && seenScores.indexOf(score) === -1) {
rerankedDocuments.push(doc)
seenScores.push(doc.metadata.relevancy_score)
}
})
})
})
return rerankedDocuments.splice(0, this.topK)
}
}