Flowise/packages/components/nodes/vectorstores/Qdrant/Qdrant_Existing.ts

195 lines
6.9 KiB
TypeScript

import { QdrantClient } from '@qdrant/js-client-rest'
import { QdrantVectorStore, QdrantLibArgs } from '@langchain/community/vectorstores/qdrant'
import { Embeddings } from '@langchain/core/embeddings'
import { VectorStoreRetrieverInput } from '@langchain/core/vectorstores'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
type RetrieverConfig = Partial<VectorStoreRetrieverInput<QdrantVectorStore>>
class Qdrant_Existing_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Qdrant Load Existing Index'
this.name = 'qdrantExistingIndex'
this.version = 2.0
this.type = 'Qdrant'
this.icon = 'qdrant.png'
this.category = 'Vector Stores'
this.description = 'Load existing index from Qdrant (i.e., documents have been upserted)'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'DEPRECATING'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
description: 'Only needed when using Qdrant cloud hosted',
optional: true,
credentialNames: ['qdrantApi']
}
this.inputs = [
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Qdrant Server URL',
name: 'qdrantServerUrl',
type: 'string',
placeholder: 'http://localhost:6333'
},
{
label: 'Qdrant Collection Name',
name: 'qdrantCollection',
type: 'string'
},
{
label: 'Vector Dimension',
name: 'qdrantVectorDimension',
type: 'number',
default: 1536,
additionalParams: true
},
{
label: 'Similarity',
name: 'qdrantSimilarity',
description: 'Similarity measure used in Qdrant.',
type: 'options',
default: 'Cosine',
options: [
{
label: 'Cosine',
name: 'Cosine'
},
{
label: 'Euclid',
name: 'Euclid'
},
{
label: 'Dot',
name: 'Dot'
}
],
additionalParams: true
},
{
label: 'Additional Collection Cofiguration',
name: 'qdrantCollectionConfiguration',
description:
'Refer to <a target="_blank" href="https://qdrant.tech/documentation/concepts/collections">collection docs</a> for more reference',
type: 'json',
optional: true,
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Qdrant Search Filter',
name: 'qdrantFilter',
description: 'Only return points which satisfy the conditions',
type: 'json',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Qdrant Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Qdrant Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(QdrantVectorStore)]
}
]
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const qdrantServerUrl = nodeData.inputs?.qdrantServerUrl as string
const collectionName = nodeData.inputs?.qdrantCollection as string
let qdrantCollectionConfiguration = nodeData.inputs?.qdrantCollectionConfiguration
const embeddings = nodeData.inputs?.embeddings as Embeddings
const qdrantSimilarity = nodeData.inputs?.qdrantSimilarity
const qdrantVectorDimension = nodeData.inputs?.qdrantVectorDimension
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
let queryFilter = nodeData.inputs?.qdrantFilter
const k = topK ? parseFloat(topK) : 4
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const qdrantApiKey = getCredentialParam('qdrantApiKey', credentialData, nodeData)
const client = new QdrantClient({
url: qdrantServerUrl,
apiKey: qdrantApiKey
})
const dbConfig: QdrantLibArgs = {
client,
collectionName
}
const retrieverConfig: RetrieverConfig = {
k
}
if (qdrantCollectionConfiguration) {
qdrantCollectionConfiguration =
typeof qdrantCollectionConfiguration === 'object'
? qdrantCollectionConfiguration
: JSON.parse(qdrantCollectionConfiguration)
dbConfig.collectionConfig = {
...qdrantCollectionConfiguration,
vectors: {
...qdrantCollectionConfiguration.vectors,
size: qdrantVectorDimension ? parseInt(qdrantVectorDimension, 10) : 1536,
distance: qdrantSimilarity ?? 'Cosine'
}
}
}
if (queryFilter) {
retrieverConfig.filter = typeof queryFilter === 'object' ? queryFilter : JSON.parse(queryFilter)
}
const vectorStore = await QdrantVectorStore.fromExistingCollection(embeddings, dbConfig)
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(retrieverConfig)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
if (queryFilter) {
;(vectorStore as any).filter = retrieverConfig.filter
}
return vectorStore
}
return vectorStore
}
}
module.exports = { nodeClass: Qdrant_Existing_VectorStores }