Flowise/packages/components/nodes/vectorstores/ZepCloud/ZepCloud.ts

233 lines
8.3 KiB
TypeScript

import { flatten } from 'lodash'
import { IDocument, ZepClient } from '@getzep/zep-cloud'
import { IZepConfig, ZepVectorStore } from '@getzep/zep-cloud/langchain'
import { Embeddings } from 'langchain/embeddings/base'
import { Document } from 'langchain/document'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils'
import { FakeEmbeddings } from 'langchain/embeddings/fake'
class Zep_CloudVectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Zep Collection - Cloud'
this.name = 'zepCloud'
this.version = 2.0
this.type = 'Zep'
this.icon = 'zep.svg'
this.category = 'Vector Stores'
this.description =
'Upsert embedded data and perform similarity or mmr search upon query using Zep, a fast and scalable building block for LLM apps'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'NEW'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
optional: false,
description: 'Configure JWT authentication on your Zep instance (Optional)',
credentialNames: ['zepMemoryApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Zep Collection',
name: 'zepCollection',
type: 'string',
placeholder: 'my-first-collection'
},
{
label: 'Zep Metadata Filter',
name: 'zepMetadataFilter',
type: 'json',
optional: true,
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
addMMRInputParams(this.inputs)
this.outputs = [
{
label: 'Zep Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Zep Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(ZepVectorStore)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
const zepCollection = nodeData.inputs?.zepCollection as string
const docs = nodeData.inputs?.document as Document[]
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
const client = await ZepClient.init(apiKey)
const zepConfig = {
apiKey: apiKey,
collectionName: zepCollection,
client
}
try {
await ZepVectorStore.fromDocuments(finalDocs, new FakeEmbeddings(), zepConfig)
return { numAdded: finalDocs.length, addedDocs: finalDocs }
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const zepCollection = nodeData.inputs?.zepCollection as string
const zepMetadataFilter = nodeData.inputs?.zepMetadataFilter
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
const zepConfig: IZepConfig & Partial<ZepFilter> = {
apiKey,
collectionName: zepCollection
}
if (zepMetadataFilter) {
zepConfig.filter = typeof zepMetadataFilter === 'object' ? zepMetadataFilter : JSON.parse(zepMetadataFilter)
}
zepConfig.client = await ZepClient.init(zepConfig.apiKey)
const vectorStore = await ZepExistingVS.init(zepConfig)
return resolveVectorStoreOrRetriever(nodeData, vectorStore, zepConfig.filter)
}
}
interface ZepFilter {
filter: Record<string, any>
}
function zepDocsToDocumentsAndScore(results: IDocument[]): [Document, number][] {
return results.map((d) => [
new Document({
pageContent: d.content,
metadata: d.metadata
}),
d.score ? d.score : 0
])
}
function assignMetadata(value: string | Record<string, unknown> | object | undefined): Record<string, unknown> | undefined {
if (typeof value === 'object' && value !== null) {
return value as Record<string, unknown>
}
if (value !== undefined) {
console.warn('Metadata filters must be an object, Record, or undefined.')
}
return undefined
}
class ZepExistingVS extends ZepVectorStore {
filter?: Record<string, any>
args?: IZepConfig & Partial<ZepFilter>
constructor(embeddings: Embeddings, args: IZepConfig & Partial<ZepFilter>) {
super(embeddings, args)
this.filter = args.filter
this.args = args
}
async initializeCollection(args: IZepConfig & Partial<ZepFilter>) {
this.client = await ZepClient.init(args.apiKey, args.apiUrl)
try {
this.collection = await this.client.document.getCollection(args.collectionName)
} catch (err) {
if (err instanceof Error) {
if (err.name === 'NotFoundError') {
await this.createNewCollection(args)
} else {
throw err
}
}
}
}
async createNewCollection(args: IZepConfig & Partial<ZepFilter>) {
this.collection = await this.client.document.addCollection({
name: args.collectionName,
description: args.description,
metadata: args.metadata
})
}
async similaritySearchVectorWithScore(
query: number[],
k: number,
filter?: Record<string, unknown> | undefined
): Promise<[Document, number][]> {
if (filter && this.filter) {
throw new Error('cannot provide both `filter` and `this.filter`')
}
const _filters = filter ?? this.filter
const ANDFilters = []
for (const filterKey in _filters) {
let filterVal = _filters[filterKey]
if (typeof filterVal === 'string') filterVal = `"${filterVal}"`
ANDFilters.push({ jsonpath: `$[*] ? (@.${filterKey} == ${filterVal})` })
}
const newfilter = {
where: { and: ANDFilters }
}
await this.initializeCollection(this.args!).catch((err) => {
console.error('Error initializing collection:', err)
throw err
})
const results = await this.collection.search(
{
embedding: new Float32Array(query),
metadata: assignMetadata(newfilter)
},
k
)
return zepDocsToDocumentsAndScore(results)
}
static async fromExistingIndex(embeddings: Embeddings, dbConfig: IZepConfig & Partial<ZepFilter>): Promise<ZepVectorStore> {
return new this(embeddings, dbConfig)
}
}
module.exports = { nodeClass: Zep_CloudVectorStores }