276 lines
9.8 KiB
TypeScript
276 lines
9.8 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { QdrantClient } from '@qdrant/js-client-rest'
|
|
import { VectorStoreRetrieverInput } from 'langchain/vectorstores/base'
|
|
import { Document } from 'langchain/document'
|
|
import { QdrantVectorStore, QdrantLibArgs } from 'langchain/vectorstores/qdrant'
|
|
import { Embeddings } from 'langchain/embeddings/base'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
|
|
type RetrieverConfig = Partial<VectorStoreRetrieverInput<QdrantVectorStore>>
|
|
|
|
class Qdrant_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Qdrant'
|
|
this.name = 'qdrant'
|
|
this.version = 1.0
|
|
this.type = 'Qdrant'
|
|
this.icon = 'qdrant.png'
|
|
this.category = 'Vector Stores'
|
|
this.description =
|
|
'Upsert embedded data and perform similarity search upon query using Qdrant, a scalable open source vector database written in Rust'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.badge = 'NEW'
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
description: 'Only needed when using Qdrant cloud hosted',
|
|
optional: true,
|
|
credentialNames: ['qdrantApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Qdrant Server URL',
|
|
name: 'qdrantServerUrl',
|
|
type: 'string',
|
|
placeholder: 'http://localhost:6333'
|
|
},
|
|
{
|
|
label: 'Qdrant Collection Name',
|
|
name: 'qdrantCollection',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Vector Dimension',
|
|
name: 'qdrantVectorDimension',
|
|
type: 'number',
|
|
default: 1536,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Similarity',
|
|
name: 'qdrantSimilarity',
|
|
description: 'Similarity measure used in Qdrant.',
|
|
type: 'options',
|
|
default: 'Cosine',
|
|
options: [
|
|
{
|
|
label: 'Cosine',
|
|
name: 'Cosine'
|
|
},
|
|
{
|
|
label: 'Euclid',
|
|
name: 'Euclid'
|
|
},
|
|
{
|
|
label: 'Dot',
|
|
name: 'Dot'
|
|
}
|
|
],
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Additional Collection Cofiguration',
|
|
name: 'qdrantCollectionConfiguration',
|
|
description:
|
|
'Refer to <a target="_blank" href="https://qdrant.tech/documentation/concepts/collections">collection docs</a> for more reference',
|
|
type: 'json',
|
|
optional: true,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Qdrant Search Filter',
|
|
name: 'qdrantFilter',
|
|
description: 'Only return points which satisfy the conditions',
|
|
type: 'json',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Qdrant Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Qdrant Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(QdrantVectorStore)]
|
|
}
|
|
]
|
|
}
|
|
|
|
//@ts-ignore
|
|
vectorStoreMethods = {
|
|
async upsert(nodeData: INodeData, options: ICommonObject): Promise<void> {
|
|
const qdrantServerUrl = nodeData.inputs?.qdrantServerUrl as string
|
|
const collectionName = nodeData.inputs?.qdrantCollection as string
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const qdrantSimilarity = nodeData.inputs?.qdrantSimilarity
|
|
const qdrantVectorDimension = nodeData.inputs?.qdrantVectorDimension
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const qdrantApiKey = getCredentialParam('qdrantApiKey', credentialData, nodeData)
|
|
|
|
const port = Qdrant_VectorStores.determinePortByUrl(qdrantServerUrl)
|
|
|
|
const client = new QdrantClient({
|
|
url: qdrantServerUrl,
|
|
apiKey: qdrantApiKey,
|
|
port: port
|
|
})
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
}
|
|
|
|
const dbConfig: QdrantLibArgs = {
|
|
client,
|
|
url: qdrantServerUrl,
|
|
collectionName,
|
|
collectionConfig: {
|
|
vectors: {
|
|
size: qdrantVectorDimension ? parseInt(qdrantVectorDimension, 10) : 1536,
|
|
distance: qdrantSimilarity ?? 'Cosine'
|
|
}
|
|
}
|
|
}
|
|
|
|
try {
|
|
await QdrantVectorStore.fromDocuments(finalDocs, embeddings, dbConfig)
|
|
} catch (e) {
|
|
throw new Error(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const qdrantServerUrl = nodeData.inputs?.qdrantServerUrl as string
|
|
const collectionName = nodeData.inputs?.qdrantCollection as string
|
|
let qdrantCollectionConfiguration = nodeData.inputs?.qdrantCollectionConfiguration
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const qdrantSimilarity = nodeData.inputs?.qdrantSimilarity
|
|
const qdrantVectorDimension = nodeData.inputs?.qdrantVectorDimension
|
|
const output = nodeData.outputs?.output as string
|
|
const topK = nodeData.inputs?.topK as string
|
|
let queryFilter = nodeData.inputs?.qdrantFilter
|
|
|
|
const k = topK ? parseFloat(topK) : 4
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const qdrantApiKey = getCredentialParam('qdrantApiKey', credentialData, nodeData)
|
|
|
|
const port = Qdrant_VectorStores.determinePortByUrl(qdrantServerUrl)
|
|
|
|
const client = new QdrantClient({
|
|
url: qdrantServerUrl,
|
|
apiKey: qdrantApiKey,
|
|
port: port
|
|
})
|
|
|
|
const dbConfig: QdrantLibArgs = {
|
|
client,
|
|
collectionName
|
|
}
|
|
|
|
const retrieverConfig: RetrieverConfig = {
|
|
k
|
|
}
|
|
|
|
if (qdrantCollectionConfiguration) {
|
|
qdrantCollectionConfiguration =
|
|
typeof qdrantCollectionConfiguration === 'object'
|
|
? qdrantCollectionConfiguration
|
|
: JSON.parse(qdrantCollectionConfiguration)
|
|
dbConfig.collectionConfig = {
|
|
...qdrantCollectionConfiguration,
|
|
vectors: {
|
|
...qdrantCollectionConfiguration.vectors,
|
|
size: qdrantVectorDimension ? parseInt(qdrantVectorDimension, 10) : 1536,
|
|
distance: qdrantSimilarity ?? 'Cosine'
|
|
}
|
|
}
|
|
}
|
|
|
|
if (queryFilter) {
|
|
retrieverConfig.filter = typeof queryFilter === 'object' ? queryFilter : JSON.parse(queryFilter)
|
|
}
|
|
|
|
const vectorStore = await QdrantVectorStore.fromExistingCollection(embeddings, dbConfig)
|
|
|
|
if (output === 'retriever') {
|
|
const retriever = vectorStore.asRetriever(retrieverConfig)
|
|
return retriever
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
|
|
/**
|
|
* Determine the port number from the given URL.
|
|
*
|
|
* The problem is when not doing this the qdrant-client.js will fall back on 6663 when you enter a port 443 and 80.
|
|
* See: https://stackoverflow.com/questions/59104197/nodejs-new-url-urlhttps-myurl-com80-lists-the-port-as-empty
|
|
* @param qdrantServerUrl the url to get the port from
|
|
*/
|
|
static determinePortByUrl(qdrantServerUrl: string): number {
|
|
const parsedUrl = new URL(qdrantServerUrl)
|
|
|
|
let port = parsedUrl.port ? parseInt(parsedUrl.port) : 6663
|
|
|
|
if (parsedUrl.protocol === 'https:' && parsedUrl.port === '') {
|
|
port = 443
|
|
}
|
|
if (parsedUrl.protocol === 'http:' && parsedUrl.port === '') {
|
|
port = 80
|
|
}
|
|
|
|
return port
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: Qdrant_VectorStores }
|