Flowise/packages/components/nodes/vectorstores/Redis/RedisSearchBase.ts

238 lines
8.8 KiB
TypeScript

import {
getBaseClasses,
getCredentialData,
getCredentialParam,
ICommonObject,
INodeData,
INodeOutputsValue,
INodeParams
} from '../../../src'
import { Embeddings } from 'langchain/embeddings/base'
import { VectorStore } from 'langchain/vectorstores/base'
import { Document } from 'langchain/document'
import { createClient, SearchOptions, RedisClientOptions } from 'redis'
import { RedisVectorStore } from 'langchain/vectorstores/redis'
import { escapeSpecialChars, unEscapeSpecialChars } from './utils'
import { isEqual } from 'lodash'
let redisClientSingleton: ReturnType<typeof createClient>
let redisClientOption: RedisClientOptions
const getRedisClient = async (option: RedisClientOptions) => {
if (!redisClientSingleton) {
// if client doesn't exists
redisClientSingleton = createClient(option)
await redisClientSingleton.connect()
redisClientOption = option
return redisClientSingleton
} else if (redisClientSingleton && !isEqual(option, redisClientOption)) {
// if client exists but option changed
redisClientSingleton.quit()
redisClientSingleton = createClient(option)
await redisClientSingleton.connect()
redisClientOption = option
return redisClientSingleton
}
return redisClientSingleton
}
export abstract class RedisSearchBase {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
redisClient: ReturnType<typeof createClient>
protected constructor() {
this.type = 'Redis'
this.icon = 'redis.svg'
this.category = 'Vector Stores'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'DEPRECATING'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['redisCacheUrlApi', 'redisCacheApi']
}
this.inputs = [
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Index Name',
name: 'indexName',
placeholder: '<VECTOR_INDEX_NAME>',
type: 'string'
},
{
label: 'Replace Index?',
name: 'replaceIndex',
description: 'Selecting this option will delete the existing index and recreate a new one',
default: false,
type: 'boolean'
},
{
label: 'Content Field',
name: 'contentKey',
description: 'Name of the field (column) that contains the actual content',
type: 'string',
default: 'content',
additionalParams: true,
optional: true
},
{
label: 'Metadata Field',
name: 'metadataKey',
description: 'Name of the field (column) that contains the metadata of the document',
type: 'string',
default: 'metadata',
additionalParams: true,
optional: true
},
{
label: 'Vector Field',
name: 'vectorKey',
description: 'Name of the field (column) that contains the vector',
type: 'string',
default: 'content_vector',
additionalParams: true,
optional: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Redis Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Redis Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(RedisVectorStore)]
}
]
}
abstract constructVectorStore(
embeddings: Embeddings,
indexName: string,
replaceIndex: boolean,
docs: Document<Record<string, any>>[] | undefined
): Promise<VectorStore>
async init(nodeData: INodeData, _: string, options: ICommonObject, docs: Document<Record<string, any>>[] | undefined): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const indexName = nodeData.inputs?.indexName as string
let contentKey = nodeData.inputs?.contentKey as string
let metadataKey = nodeData.inputs?.metadataKey as string
let vectorKey = nodeData.inputs?.vectorKey as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const topK = nodeData.inputs?.topK as string
const replaceIndex = nodeData.inputs?.replaceIndex as boolean
const k = topK ? parseFloat(topK) : 4
const output = nodeData.outputs?.output as string
let redisUrl = getCredentialParam('redisUrl', credentialData, nodeData)
if (!redisUrl || redisUrl === '') {
const username = getCredentialParam('redisCacheUser', credentialData, nodeData)
const password = getCredentialParam('redisCachePwd', credentialData, nodeData)
const portStr = getCredentialParam('redisCachePort', credentialData, nodeData)
const host = getCredentialParam('redisCacheHost', credentialData, nodeData)
redisUrl = 'redis://' + username + ':' + password + '@' + host + ':' + portStr
}
this.redisClient = await getRedisClient({ url: redisUrl })
const vectorStore = await this.constructVectorStore(embeddings, indexName, replaceIndex, docs)
if (!contentKey || contentKey === '') contentKey = 'content'
if (!metadataKey || metadataKey === '') metadataKey = 'metadata'
if (!vectorKey || vectorKey === '') vectorKey = 'content_vector'
const buildQuery = (query: number[], k: number, filter?: string[]): [string, SearchOptions] => {
const vectorScoreField = 'vector_score'
let hybridFields = '*'
// if a filter is set, modify the hybrid query
if (filter && filter.length) {
// `filter` is a list of strings, then it's applied using the OR operator in the metadata key
hybridFields = `@${metadataKey}:(${filter.map(escapeSpecialChars).join('|')})`
}
const baseQuery = `${hybridFields} => [KNN ${k} @${vectorKey} $vector AS ${vectorScoreField}]`
const returnFields = [metadataKey, contentKey, vectorScoreField]
const options: SearchOptions = {
PARAMS: {
vector: Buffer.from(new Float32Array(query).buffer)
},
RETURN: returnFields,
SORTBY: vectorScoreField,
DIALECT: 2,
LIMIT: {
from: 0,
size: k
}
}
return [baseQuery, options]
}
vectorStore.similaritySearchVectorWithScore = async (
query: number[],
k: number,
filter?: string[]
): Promise<[Document, number][]> => {
const results = await this.redisClient.ft.search(indexName, ...buildQuery(query, k, filter))
const result: [Document, number][] = []
if (results.total) {
for (const res of results.documents) {
if (res.value) {
const document = res.value
if (document.vector_score) {
const metadataString = unEscapeSpecialChars(document[metadataKey] as string)
result.push([
new Document({
pageContent: document[contentKey] as string,
metadata: JSON.parse(metadataString)
}),
Number(document.vector_score)
])
}
}
}
}
return result
}
if (output === 'retriever') {
return vectorStore.asRetriever(k)
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}