238 lines
8.8 KiB
TypeScript
238 lines
8.8 KiB
TypeScript
import {
|
|
getBaseClasses,
|
|
getCredentialData,
|
|
getCredentialParam,
|
|
ICommonObject,
|
|
INodeData,
|
|
INodeOutputsValue,
|
|
INodeParams
|
|
} from '../../../src'
|
|
import { Embeddings } from 'langchain/embeddings/base'
|
|
import { VectorStore } from 'langchain/vectorstores/base'
|
|
import { Document } from 'langchain/document'
|
|
import { createClient, SearchOptions, RedisClientOptions } from 'redis'
|
|
import { RedisVectorStore } from 'langchain/vectorstores/redis'
|
|
import { escapeSpecialChars, unEscapeSpecialChars } from './utils'
|
|
import { isEqual } from 'lodash'
|
|
|
|
let redisClientSingleton: ReturnType<typeof createClient>
|
|
let redisClientOption: RedisClientOptions
|
|
|
|
const getRedisClient = async (option: RedisClientOptions) => {
|
|
if (!redisClientSingleton) {
|
|
// if client doesn't exists
|
|
redisClientSingleton = createClient(option)
|
|
await redisClientSingleton.connect()
|
|
redisClientOption = option
|
|
return redisClientSingleton
|
|
} else if (redisClientSingleton && !isEqual(option, redisClientOption)) {
|
|
// if client exists but option changed
|
|
redisClientSingleton.quit()
|
|
redisClientSingleton = createClient(option)
|
|
await redisClientSingleton.connect()
|
|
redisClientOption = option
|
|
return redisClientSingleton
|
|
}
|
|
return redisClientSingleton
|
|
}
|
|
|
|
export abstract class RedisSearchBase {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
redisClient: ReturnType<typeof createClient>
|
|
|
|
protected constructor() {
|
|
this.type = 'Redis'
|
|
this.icon = 'redis.svg'
|
|
this.category = 'Vector Stores'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.badge = 'DEPRECATING'
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['redisCacheUrlApi', 'redisCacheApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Index Name',
|
|
name: 'indexName',
|
|
placeholder: '<VECTOR_INDEX_NAME>',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Replace Index?',
|
|
name: 'replaceIndex',
|
|
description: 'Selecting this option will delete the existing index and recreate a new one',
|
|
default: false,
|
|
type: 'boolean'
|
|
},
|
|
{
|
|
label: 'Content Field',
|
|
name: 'contentKey',
|
|
description: 'Name of the field (column) that contains the actual content',
|
|
type: 'string',
|
|
default: 'content',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Metadata Field',
|
|
name: 'metadataKey',
|
|
description: 'Name of the field (column) that contains the metadata of the document',
|
|
type: 'string',
|
|
default: 'metadata',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Vector Field',
|
|
name: 'vectorKey',
|
|
description: 'Name of the field (column) that contains the vector',
|
|
type: 'string',
|
|
default: 'content_vector',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Redis Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Redis Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(RedisVectorStore)]
|
|
}
|
|
]
|
|
}
|
|
|
|
abstract constructVectorStore(
|
|
embeddings: Embeddings,
|
|
indexName: string,
|
|
replaceIndex: boolean,
|
|
docs: Document<Record<string, any>>[] | undefined
|
|
): Promise<VectorStore>
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject, docs: Document<Record<string, any>>[] | undefined): Promise<any> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
let contentKey = nodeData.inputs?.contentKey as string
|
|
let metadataKey = nodeData.inputs?.metadataKey as string
|
|
let vectorKey = nodeData.inputs?.vectorKey as string
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const topK = nodeData.inputs?.topK as string
|
|
const replaceIndex = nodeData.inputs?.replaceIndex as boolean
|
|
const k = topK ? parseFloat(topK) : 4
|
|
const output = nodeData.outputs?.output as string
|
|
|
|
let redisUrl = getCredentialParam('redisUrl', credentialData, nodeData)
|
|
if (!redisUrl || redisUrl === '') {
|
|
const username = getCredentialParam('redisCacheUser', credentialData, nodeData)
|
|
const password = getCredentialParam('redisCachePwd', credentialData, nodeData)
|
|
const portStr = getCredentialParam('redisCachePort', credentialData, nodeData)
|
|
const host = getCredentialParam('redisCacheHost', credentialData, nodeData)
|
|
|
|
redisUrl = 'redis://' + username + ':' + password + '@' + host + ':' + portStr
|
|
}
|
|
|
|
this.redisClient = await getRedisClient({ url: redisUrl })
|
|
|
|
const vectorStore = await this.constructVectorStore(embeddings, indexName, replaceIndex, docs)
|
|
if (!contentKey || contentKey === '') contentKey = 'content'
|
|
if (!metadataKey || metadataKey === '') metadataKey = 'metadata'
|
|
if (!vectorKey || vectorKey === '') vectorKey = 'content_vector'
|
|
|
|
const buildQuery = (query: number[], k: number, filter?: string[]): [string, SearchOptions] => {
|
|
const vectorScoreField = 'vector_score'
|
|
|
|
let hybridFields = '*'
|
|
// if a filter is set, modify the hybrid query
|
|
if (filter && filter.length) {
|
|
// `filter` is a list of strings, then it's applied using the OR operator in the metadata key
|
|
hybridFields = `@${metadataKey}:(${filter.map(escapeSpecialChars).join('|')})`
|
|
}
|
|
|
|
const baseQuery = `${hybridFields} => [KNN ${k} @${vectorKey} $vector AS ${vectorScoreField}]`
|
|
const returnFields = [metadataKey, contentKey, vectorScoreField]
|
|
|
|
const options: SearchOptions = {
|
|
PARAMS: {
|
|
vector: Buffer.from(new Float32Array(query).buffer)
|
|
},
|
|
RETURN: returnFields,
|
|
SORTBY: vectorScoreField,
|
|
DIALECT: 2,
|
|
LIMIT: {
|
|
from: 0,
|
|
size: k
|
|
}
|
|
}
|
|
|
|
return [baseQuery, options]
|
|
}
|
|
|
|
vectorStore.similaritySearchVectorWithScore = async (
|
|
query: number[],
|
|
k: number,
|
|
filter?: string[]
|
|
): Promise<[Document, number][]> => {
|
|
const results = await this.redisClient.ft.search(indexName, ...buildQuery(query, k, filter))
|
|
const result: [Document, number][] = []
|
|
|
|
if (results.total) {
|
|
for (const res of results.documents) {
|
|
if (res.value) {
|
|
const document = res.value
|
|
if (document.vector_score) {
|
|
const metadataString = unEscapeSpecialChars(document[metadataKey] as string)
|
|
result.push([
|
|
new Document({
|
|
pageContent: document[contentKey] as string,
|
|
metadata: JSON.parse(metadataString)
|
|
}),
|
|
Number(document.vector_score)
|
|
])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
if (output === 'retriever') {
|
|
return vectorStore.asRetriever(k)
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
}
|