Flowise/packages/components/nodes/chatmodels/ChatOllamaFunction/ChatOllamaFunction.ts

811 lines
32 KiB
TypeScript

import { HumanMessage, AIMessage, BaseMessage, AIMessageChunk, ChatMessage } from '@langchain/core/messages'
import { ChatResult } from '@langchain/core/outputs'
import { SimpleChatModel, BaseChatModel, BaseChatModelParams } from '@langchain/core/language_models/chat_models'
import { SystemMessagePromptTemplate } from '@langchain/core/prompts'
import { BaseCache } from '@langchain/core/caches'
import { type StructuredToolInterface } from '@langchain/core/tools'
import type { BaseFunctionCallOptions, BaseLanguageModelInput } from '@langchain/core/language_models/base'
import { convertToOpenAIFunction } from '@langchain/core/utils/function_calling'
import { RunnableInterface } from '@langchain/core/runnables'
import { ICommonObject, INode, INodeData, INodeParams } from '../../../src/Interface'
import { getBaseClasses } from '../../../src/utils'
import type { BaseLanguageModelCallOptions } from '@langchain/core/language_models/base'
import { CallbackManagerForLLMRun } from '@langchain/core/callbacks/manager'
import { ChatGenerationChunk } from '@langchain/core/outputs'
import type { StringWithAutocomplete } from '@langchain/core/utils/types'
import { createOllamaChatStream, createOllamaGenerateStream, type OllamaInput, type OllamaMessage } from './utils'
const DEFAULT_TOOL_SYSTEM_TEMPLATE = `You have access to the following tools:
{tools}
You must always select one of the above tools and respond with only a JSON object matching the following schema:
{{
"tool": <name of the selected tool>,
"tool_input": <parameters for the selected tool, matching the tool's JSON schema>
}}`
class ChatOllamaFunction_ChatModels implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
description: string
baseClasses: string[]
credential: INodeParams
badge?: string
inputs: INodeParams[]
constructor() {
this.label = 'ChatOllama Function'
this.name = 'chatOllamaFunction'
this.version = 1.0
this.type = 'ChatOllamaFunction'
this.icon = 'Ollama.svg'
this.category = 'Chat Models'
this.badge = 'DEPRECATING'
this.description = 'Run open-source function-calling compatible LLM on Ollama'
this.baseClasses = [this.type, ...getBaseClasses(OllamaFunctions)]
this.inputs = [
{
label: 'Cache',
name: 'cache',
type: 'BaseCache',
optional: true
},
{
label: 'Base URL',
name: 'baseUrl',
type: 'string',
default: 'http://localhost:11434'
},
{
label: 'Model Name',
name: 'modelName',
type: 'string',
description: 'Only compatible with function calling model like mistral',
placeholder: 'mistral'
},
{
label: 'Temperature',
name: 'temperature',
type: 'number',
description:
'The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8). Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 0.1,
default: 0.9,
optional: true
},
{
label: 'Tool System Prompt',
name: 'toolSystemPromptTemplate',
type: 'string',
rows: 4,
description: `Under the hood, Ollama's JSON mode is being used to constrain output to JSON. Output JSON will contains two keys: tool and tool_input fields. We then parse it to execute the tool. Because different models have different strengths, it may be helpful to pass in your own system prompt.`,
warning: `Prompt must always contains {tools} and instructions to respond with a JSON object with tool and tool_input fields`,
default: DEFAULT_TOOL_SYSTEM_TEMPLATE,
placeholder: DEFAULT_TOOL_SYSTEM_TEMPLATE,
additionalParams: true,
optional: true
},
{
label: 'Top P',
name: 'topP',
type: 'number',
description:
'Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9). Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 0.1,
optional: true,
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
type: 'number',
description:
'Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40). Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Mirostat',
name: 'mirostat',
type: 'number',
description:
'Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0). Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Mirostat ETA',
name: 'mirostatEta',
type: 'number',
description:
'Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 0.1,
optional: true,
additionalParams: true
},
{
label: 'Mirostat TAU',
name: 'mirostatTau',
type: 'number',
description:
'Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 0.1,
optional: true,
additionalParams: true
},
{
label: 'Context Window Size',
name: 'numCtx',
type: 'number',
description:
'Sets the size of the context window used to generate the next token. (Default: 2048) Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Number of GQA groups',
name: 'numGqa',
type: 'number',
description:
'The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Number of GPU',
name: 'numGpu',
type: 'number',
description:
'The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Number of Thread',
name: 'numThread',
type: 'number',
description:
'Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Repeat Last N',
name: 'repeatLastN',
type: 'number',
description:
'Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx). Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Repeat Penalty',
name: 'repeatPenalty',
type: 'number',
description:
'Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1). Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 0.1,
optional: true,
additionalParams: true
},
{
label: 'Stop Sequence',
name: 'stop',
type: 'string',
rows: 4,
placeholder: 'AI assistant:',
description:
'Sets the stop sequences to use. Use comma to seperate different sequences. Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
optional: true,
additionalParams: true
},
{
label: 'Tail Free Sampling',
name: 'tfsZ',
type: 'number',
description:
'Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (Default: 1). Refer to <a target="_blank" href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">docs</a> for more details',
step: 0.1,
optional: true,
additionalParams: true
}
]
}
async init(nodeData: INodeData): Promise<any> {
const temperature = nodeData.inputs?.temperature as string
const baseUrl = nodeData.inputs?.baseUrl as string
const modelName = nodeData.inputs?.modelName as string
const topP = nodeData.inputs?.topP as string
const topK = nodeData.inputs?.topK as string
const mirostat = nodeData.inputs?.mirostat as string
const mirostatEta = nodeData.inputs?.mirostatEta as string
const mirostatTau = nodeData.inputs?.mirostatTau as string
const numCtx = nodeData.inputs?.numCtx as string
const numGqa = nodeData.inputs?.numGqa as string
const numGpu = nodeData.inputs?.numGpu as string
const numThread = nodeData.inputs?.numThread as string
const repeatLastN = nodeData.inputs?.repeatLastN as string
const repeatPenalty = nodeData.inputs?.repeatPenalty as string
const stop = nodeData.inputs?.stop as string
const tfsZ = nodeData.inputs?.tfsZ as string
const toolSystemPromptTemplate = nodeData.inputs?.toolSystemPromptTemplate as string
const cache = nodeData.inputs?.cache as BaseCache
const obj: OllamaFunctionsInput = {
baseUrl,
temperature: parseFloat(temperature),
model: modelName,
toolSystemPromptTemplate: toolSystemPromptTemplate ? toolSystemPromptTemplate : DEFAULT_TOOL_SYSTEM_TEMPLATE
}
if (topP) obj.topP = parseFloat(topP)
if (topK) obj.topK = parseFloat(topK)
if (mirostat) obj.mirostat = parseFloat(mirostat)
if (mirostatEta) obj.mirostatEta = parseFloat(mirostatEta)
if (mirostatTau) obj.mirostatTau = parseFloat(mirostatTau)
if (numCtx) obj.numCtx = parseFloat(numCtx)
if (numGqa) obj.numGqa = parseFloat(numGqa)
if (numGpu) obj.numGpu = parseFloat(numGpu)
if (numThread) obj.numThread = parseFloat(numThread)
if (repeatLastN) obj.repeatLastN = parseFloat(repeatLastN)
if (repeatPenalty) obj.repeatPenalty = parseFloat(repeatPenalty)
if (tfsZ) obj.tfsZ = parseFloat(tfsZ)
if (stop) {
const stopSequences = stop.split(',')
obj.stop = stopSequences
}
if (cache) obj.cache = cache
const model = new OllamaFunctions(obj)
return model
}
}
interface ChatOllamaFunctionsCallOptions extends BaseFunctionCallOptions {}
type OllamaFunctionsInput = Partial<ChatOllamaInput> &
BaseChatModelParams & {
llm?: OllamaChat
toolSystemPromptTemplate?: string
}
class OllamaFunctions extends BaseChatModel<ChatOllamaFunctionsCallOptions> {
llm: OllamaChat
fields?: OllamaFunctionsInput
toolSystemPromptTemplate: string = DEFAULT_TOOL_SYSTEM_TEMPLATE
protected defaultResponseFunction = {
name: '__conversational_response',
description: 'Respond conversationally if no other tools should be called for a given query.',
parameters: {
type: 'object',
properties: {
response: {
type: 'string',
description: 'Conversational response to the user.'
}
},
required: ['response']
}
}
static lc_name(): string {
return 'OllamaFunctions'
}
constructor(fields?: OllamaFunctionsInput) {
super(fields ?? {})
this.fields = fields
this.llm = fields?.llm ?? new OllamaChat({ ...fields, format: 'json' })
this.toolSystemPromptTemplate = fields?.toolSystemPromptTemplate ?? this.toolSystemPromptTemplate
}
invocationParams() {
return this.llm.invocationParams()
}
/** @ignore */
_identifyingParams() {
return this.llm._identifyingParams()
}
async _generate(
messages: BaseMessage[],
options: this['ParsedCallOptions'],
runManager?: CallbackManagerForLLMRun | undefined
): Promise<ChatResult> {
let functions = options.functions ?? []
if (options.function_call !== undefined) {
functions = functions.filter((fn) => fn.name === options.function_call?.name)
if (!functions.length) {
throw new Error(`If "function_call" is specified, you must also pass a matching function in "functions".`)
}
} else if (functions.length === 0) {
functions.push(this.defaultResponseFunction)
}
const systemPromptTemplate = SystemMessagePromptTemplate.fromTemplate(this.toolSystemPromptTemplate)
const systemMessage = await systemPromptTemplate.format({
tools: JSON.stringify(functions, null, 2)
})
let generatedMessages = [systemMessage, ...messages]
let isToolResponse = false
if (
messages.length > 3 &&
messages[messages.length - 1]._getType() === 'tool' &&
functions.length &&
messages[messages.length - 1].additional_kwargs?.name === functions[0].name
) {
const lastToolQuestion = messages[messages.length - 3].content
const lastToolResp = messages.pop()?.content
// Pop the message again to get rid of tool call message
messages.pop()?.content
const humanMessage = new HumanMessage({
content: `Given user question: ${lastToolQuestion} and answer: ${lastToolResp}\n\nWrite a natural language response`
})
generatedMessages = [...messages, humanMessage]
isToolResponse = true
this.llm = new OllamaChat({ ...this.fields })
}
const chatResult = await this.llm._generate(generatedMessages, options, runManager)
const chatGenerationContent = chatResult.generations[0].message.content
if (typeof chatGenerationContent !== 'string') {
throw new Error('OllamaFunctions does not support non-string output.')
}
if (isToolResponse) {
return {
generations: [
{
message: new AIMessage({
content: chatGenerationContent
}),
text: chatGenerationContent
}
]
}
}
let parsedChatResult
try {
parsedChatResult = JSON.parse(chatGenerationContent)
} catch (e) {
throw new Error(`"${this.llm.model}" did not respond with valid JSON. Please try again.`)
}
const calledToolName = parsedChatResult.tool
const calledToolArguments = parsedChatResult.tool_input
const calledTool = functions.find((fn) => fn.name === calledToolName)
if (calledTool === undefined) {
throw new Error(`Failed to parse a function call from ${this.llm.model} output: ${chatGenerationContent}`)
}
if (calledTool.name === this.defaultResponseFunction.name) {
return {
generations: [
{
message: new AIMessage({
content: calledToolArguments.response
}),
text: calledToolArguments.response
}
]
}
}
const responseMessageWithFunctions = new AIMessage({
content: '',
tool_calls: [
{
name: calledToolName,
args: calledToolArguments || {}
}
],
invalid_tool_calls: [],
additional_kwargs: {
function_call: {
name: calledToolName,
arguments: calledToolArguments ? JSON.stringify(calledToolArguments) : ''
},
tool_calls: [
{
id: Date.now().toString(),
type: 'function',
function: {
name: calledToolName,
arguments: calledToolArguments ? JSON.stringify(calledToolArguments) : ''
}
}
]
}
})
return {
generations: [{ message: responseMessageWithFunctions, text: '' }]
}
}
//@ts-ignore
override bindTools(
tools: StructuredToolInterface[],
kwargs?: Partial<ICommonObject>
): RunnableInterface<BaseLanguageModelInput, AIMessageChunk, ICommonObject> {
return this.bind({
functions: tools.map((tool) => convertToOpenAIFunction(tool)),
...kwargs
} as Partial<ICommonObject>)
}
_llmType(): string {
return 'ollama_functions'
}
/** @ignore */
_combineLLMOutput() {
return []
}
}
export interface ChatOllamaInput extends OllamaInput {}
interface ChatOllamaCallOptions extends BaseLanguageModelCallOptions {}
class OllamaChat extends SimpleChatModel<ChatOllamaCallOptions> implements ChatOllamaInput {
static lc_name() {
return 'ChatOllama'
}
lc_serializable = true
model = 'llama2'
baseUrl = 'http://localhost:11434'
keepAlive = '5m'
embeddingOnly?: boolean
f16KV?: boolean
frequencyPenalty?: number
headers?: Record<string, string>
logitsAll?: boolean
lowVram?: boolean
mainGpu?: number
mirostat?: number
mirostatEta?: number
mirostatTau?: number
numBatch?: number
numCtx?: number
numGpu?: number
numGqa?: number
numKeep?: number
numPredict?: number
numThread?: number
penalizeNewline?: boolean
presencePenalty?: number
repeatLastN?: number
repeatPenalty?: number
ropeFrequencyBase?: number
ropeFrequencyScale?: number
temperature?: number
stop?: string[]
tfsZ?: number
topK?: number
topP?: number
typicalP?: number
useMLock?: boolean
useMMap?: boolean
vocabOnly?: boolean
format?: StringWithAutocomplete<'json'>
constructor(fields: OllamaInput & BaseChatModelParams) {
super(fields)
this.model = fields.model ?? this.model
this.baseUrl = fields.baseUrl?.endsWith('/') ? fields.baseUrl.slice(0, -1) : fields.baseUrl ?? this.baseUrl
this.keepAlive = fields.keepAlive ?? this.keepAlive
this.embeddingOnly = fields.embeddingOnly
this.f16KV = fields.f16KV
this.frequencyPenalty = fields.frequencyPenalty
this.headers = fields.headers
this.logitsAll = fields.logitsAll
this.lowVram = fields.lowVram
this.mainGpu = fields.mainGpu
this.mirostat = fields.mirostat
this.mirostatEta = fields.mirostatEta
this.mirostatTau = fields.mirostatTau
this.numBatch = fields.numBatch
this.numCtx = fields.numCtx
this.numGpu = fields.numGpu
this.numGqa = fields.numGqa
this.numKeep = fields.numKeep
this.numPredict = fields.numPredict
this.numThread = fields.numThread
this.penalizeNewline = fields.penalizeNewline
this.presencePenalty = fields.presencePenalty
this.repeatLastN = fields.repeatLastN
this.repeatPenalty = fields.repeatPenalty
this.ropeFrequencyBase = fields.ropeFrequencyBase
this.ropeFrequencyScale = fields.ropeFrequencyScale
this.temperature = fields.temperature
this.stop = fields.stop
this.tfsZ = fields.tfsZ
this.topK = fields.topK
this.topP = fields.topP
this.typicalP = fields.typicalP
this.useMLock = fields.useMLock
this.useMMap = fields.useMMap
this.vocabOnly = fields.vocabOnly
this.format = fields.format
}
_llmType() {
return 'ollama'
}
/**
* A method that returns the parameters for an Ollama API call. It
* includes model and options parameters.
* @param options Optional parsed call options.
* @returns An object containing the parameters for an Ollama API call.
*/
invocationParams(options?: this['ParsedCallOptions']) {
return {
model: this.model,
format: this.format,
keep_alive: this.keepAlive,
options: {
embedding_only: this.embeddingOnly,
f16_kv: this.f16KV,
frequency_penalty: this.frequencyPenalty,
logits_all: this.logitsAll,
low_vram: this.lowVram,
main_gpu: this.mainGpu,
mirostat: this.mirostat,
mirostat_eta: this.mirostatEta,
mirostat_tau: this.mirostatTau,
num_batch: this.numBatch,
num_ctx: this.numCtx,
num_gpu: this.numGpu,
num_gqa: this.numGqa,
num_keep: this.numKeep,
num_predict: this.numPredict,
num_thread: this.numThread,
penalize_newline: this.penalizeNewline,
presence_penalty: this.presencePenalty,
repeat_last_n: this.repeatLastN,
repeat_penalty: this.repeatPenalty,
rope_frequency_base: this.ropeFrequencyBase,
rope_frequency_scale: this.ropeFrequencyScale,
temperature: this.temperature,
stop: options?.stop ?? this.stop,
tfs_z: this.tfsZ,
top_k: this.topK,
top_p: this.topP,
typical_p: this.typicalP,
use_mlock: this.useMLock,
use_mmap: this.useMMap,
vocab_only: this.vocabOnly
}
}
}
_combineLLMOutput() {
return {}
}
/** @deprecated */
async *_streamResponseChunksLegacy(
input: BaseMessage[],
options: this['ParsedCallOptions'],
runManager?: CallbackManagerForLLMRun
): AsyncGenerator<ChatGenerationChunk> {
const stream = createOllamaGenerateStream(
this.baseUrl,
{
...this.invocationParams(options),
prompt: this._formatMessagesAsPrompt(input)
},
{
...options,
headers: this.headers
}
)
for await (const chunk of stream) {
if (!chunk.done) {
yield new ChatGenerationChunk({
text: chunk.response,
message: new AIMessageChunk({ content: chunk.response })
})
await runManager?.handleLLMNewToken(chunk.response ?? '')
} else {
yield new ChatGenerationChunk({
text: '',
message: new AIMessageChunk({ content: '' }),
generationInfo: {
model: chunk.model,
total_duration: chunk.total_duration,
load_duration: chunk.load_duration,
prompt_eval_count: chunk.prompt_eval_count,
prompt_eval_duration: chunk.prompt_eval_duration,
eval_count: chunk.eval_count,
eval_duration: chunk.eval_duration
}
})
}
}
}
async *_streamResponseChunks(
input: BaseMessage[],
options: this['ParsedCallOptions'],
runManager?: CallbackManagerForLLMRun
): AsyncGenerator<ChatGenerationChunk> {
try {
const stream = await this.caller.call(async () =>
createOllamaChatStream(
this.baseUrl,
{
...this.invocationParams(options),
messages: this._convertMessagesToOllamaMessages(input)
},
{
...options,
headers: this.headers
}
)
)
for await (const chunk of stream) {
if (!chunk.done) {
yield new ChatGenerationChunk({
text: chunk.message.content,
message: new AIMessageChunk({ content: chunk.message.content })
})
await runManager?.handleLLMNewToken(chunk.message.content ?? '')
} else {
yield new ChatGenerationChunk({
text: '',
message: new AIMessageChunk({ content: '' }),
generationInfo: {
model: chunk.model,
total_duration: chunk.total_duration,
load_duration: chunk.load_duration,
prompt_eval_count: chunk.prompt_eval_count,
prompt_eval_duration: chunk.prompt_eval_duration,
eval_count: chunk.eval_count,
eval_duration: chunk.eval_duration
}
})
}
}
} catch (e: any) {
if (e.response?.status === 404) {
console.warn(
'[WARNING]: It seems you are using a legacy version of Ollama. Please upgrade to a newer version for better chat support.'
)
yield* this._streamResponseChunksLegacy(input, options, runManager)
} else {
throw e
}
}
}
protected _convertMessagesToOllamaMessages(messages: BaseMessage[]): OllamaMessage[] {
return messages.map((message) => {
let role
if (message._getType() === 'human') {
role = 'user'
} else if (message._getType() === 'ai' || message._getType() === 'tool') {
role = 'assistant'
} else if (message._getType() === 'system') {
role = 'system'
} else {
throw new Error(`Unsupported message type for Ollama: ${message._getType()}`)
}
let content = ''
const images = []
if (typeof message.content === 'string') {
content = message.content
} else {
for (const contentPart of message.content) {
if (contentPart.type === 'text') {
content = `${content}\n${contentPart.text}`
} else if (contentPart.type === 'image_url' && typeof contentPart.image_url === 'string') {
const imageUrlComponents = contentPart.image_url.split(',')
// Support both data:image/jpeg;base64,<image> format as well
images.push(imageUrlComponents[1] ?? imageUrlComponents[0])
} else {
throw new Error(
`Unsupported message content type. Must either have type "text" or type "image_url" with a string "image_url" field.`
)
}
}
}
return {
role,
content,
images
}
})
}
/** @deprecated */
protected _formatMessagesAsPrompt(messages: BaseMessage[]): string {
const formattedMessages = messages
.map((message) => {
let messageText
if (message._getType() === 'human') {
messageText = `[INST] ${message.content} [/INST]`
} else if (message._getType() === 'ai') {
messageText = message.content
} else if (message._getType() === 'system') {
messageText = `<<SYS>> ${message.content} <</SYS>>`
} else if (ChatMessage.isInstance(message)) {
messageText = `\n\n${message.role[0].toUpperCase()}${message.role.slice(1)}: ${message.content}`
} else {
console.warn(`Unsupported message type passed to Ollama: "${message._getType()}"`)
messageText = ''
}
return messageText
})
.join('\n')
return formattedMessages
}
/** @ignore */
async _call(messages: BaseMessage[], options: this['ParsedCallOptions'], runManager?: CallbackManagerForLLMRun): Promise<string> {
const chunks = []
for await (const chunk of this._streamResponseChunks(messages, options, runManager)) {
chunks.push(chunk.message.content)
}
return chunks.join('')
}
}
module.exports = { nodeClass: ChatOllamaFunction_ChatModels }