Flowise/packages/components/nodes/documentloaders/Csv/Csv.ts

156 lines
5.4 KiB
TypeScript

import { omit } from 'lodash'
import { ICommonObject, IDocument, INode, INodeData, INodeParams } from '../../../src/Interface'
import { TextSplitter } from 'langchain/text_splitter'
import { CSVLoader } from 'langchain/document_loaders/fs/csv'
import { getFileFromStorage } from '../../../src'
class Csv_DocumentLoaders implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
constructor() {
this.label = 'Csv File'
this.name = 'csvFile'
this.version = 1.0
this.type = 'Document'
this.icon = 'csv.svg'
this.category = 'Document Loaders'
this.description = `Load data from CSV files`
this.baseClasses = [this.type]
this.inputs = [
{
label: 'Csv File',
name: 'csvFile',
type: 'file',
fileType: '.csv'
},
{
label: 'Text Splitter',
name: 'textSplitter',
type: 'TextSplitter',
optional: true
},
{
label: 'Single Column Extraction',
name: 'columnName',
type: 'string',
description: 'Extracting a single column',
placeholder: 'Enter column name',
optional: true
},
{
label: 'Additional Metadata',
name: 'metadata',
type: 'json',
description: 'Additional metadata to be added to the extracted documents',
optional: true,
additionalParams: true
},
{
label: 'Omit Metadata Keys',
name: 'omitMetadataKeys',
type: 'string',
rows: 4,
description:
'Each document loader comes with a default set of metadata keys that are extracted from the document. You can use this field to omit some of the default metadata keys. The value should be a list of keys, seperated by comma',
placeholder: 'key1, key2, key3.nestedKey1',
optional: true,
additionalParams: true
}
]
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const textSplitter = nodeData.inputs?.textSplitter as TextSplitter
const csvFileBase64 = nodeData.inputs?.csvFile as string
const columnName = nodeData.inputs?.columnName as string
const metadata = nodeData.inputs?.metadata
const _omitMetadataKeys = nodeData.inputs?.omitMetadataKeys as string
let omitMetadataKeys: string[] = []
if (_omitMetadataKeys) {
omitMetadataKeys = _omitMetadataKeys.split(',').map((key) => key.trim())
}
let docs: IDocument[] = []
let files: string[] = []
if (csvFileBase64.startsWith('FILE-STORAGE::')) {
const fileName = csvFileBase64.replace('FILE-STORAGE::', '')
if (fileName.startsWith('[') && fileName.endsWith(']')) {
files = JSON.parse(fileName)
} else {
files = [fileName]
}
const chatflowid = options.chatflowid
for (const file of files) {
const fileData = await getFileFromStorage(file, chatflowid)
const blob = new Blob([fileData])
const loader = new CSVLoader(blob, columnName.trim().length === 0 ? undefined : columnName.trim())
if (textSplitter) {
docs.push(...(await loader.loadAndSplit(textSplitter)))
} else {
docs.push(...(await loader.load()))
}
}
} else {
if (csvFileBase64.startsWith('[') && csvFileBase64.endsWith(']')) {
files = JSON.parse(csvFileBase64)
} else {
files = [csvFileBase64]
}
for (const file of files) {
const splitDataURI = file.split(',')
splitDataURI.pop()
const bf = Buffer.from(splitDataURI.pop() || '', 'base64')
const blob = new Blob([bf])
const loader = new CSVLoader(blob, columnName.trim().length === 0 ? undefined : columnName.trim())
if (textSplitter) {
docs.push(...(await loader.loadAndSplit(textSplitter)))
} else {
docs.push(...(await loader.load()))
}
}
}
if (metadata) {
const parsedMetadata = typeof metadata === 'object' ? metadata : JSON.parse(metadata)
docs = docs.map((doc) => ({
...doc,
metadata: omit(
{
...doc.metadata,
...parsedMetadata
},
omitMetadataKeys
)
}))
} else {
docs = docs.map((doc) => ({
...doc,
metadata: omit(
{
...doc.metadata
},
omitMetadataKeys
)
}))
}
return docs
}
}
module.exports = { nodeClass: Csv_DocumentLoaders }