Flowise/packages/components/nodes/agents/ConversationalRetrievalTool.../ConversationalRetrievalTool...

379 lines
15 KiB
TypeScript

import { flatten } from 'lodash'
import { BaseMessage } from '@langchain/core/messages'
import { ChainValues } from '@langchain/core/utils/types'
import { RunnableSequence } from '@langchain/core/runnables'
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { ChatPromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate, PromptTemplate } from '@langchain/core/prompts'
import { formatToOpenAIToolMessages } from 'langchain/agents/format_scratchpad/openai_tools'
import { getBaseClasses, transformBracesWithColon, convertChatHistoryToText, convertBaseMessagetoIMessage } from '../../../src/utils'
import { type ToolsAgentStep } from 'langchain/agents/openai/output_parser'
import {
FlowiseMemory,
ICommonObject,
INode,
INodeData,
INodeParams,
IServerSideEventStreamer,
IUsedTool,
IVisionChatModal
} from '../../../src/Interface'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { AgentExecutor, ToolCallingAgentOutputParser } from '../../../src/agents'
import { Moderation, checkInputs, streamResponse } from '../../moderation/Moderation'
import { formatResponse } from '../../outputparsers/OutputParserHelpers'
import type { Document } from '@langchain/core/documents'
import { BaseRetriever } from '@langchain/core/retrievers'
import { RESPONSE_TEMPLATE, REPHRASE_TEMPLATE } from '../../chains/ConversationalRetrievalQAChain/prompts'
import { addImagesToMessages, llmSupportsVision } from '../../../src/multiModalUtils'
import { StringOutputParser } from '@langchain/core/output_parsers'
import { Tool } from '@langchain/core/tools'
class ConversationalRetrievalToolAgent_Agents implements INode {
label: string
name: string
author: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
sessionId?: string
constructor(fields?: { sessionId?: string }) {
this.label = 'Conversational Retrieval Tool Agent'
this.name = 'conversationalRetrievalToolAgent'
this.author = 'niztal(falkor) and nikitas-novatix'
this.version = 1.0
this.type = 'AgentExecutor'
this.category = 'Agents'
this.icon = 'toolAgent.png'
this.description = `Agent that calls a vector store retrieval and uses Function Calling to pick the tools and args to call`
this.baseClasses = [this.type, ...getBaseClasses(AgentExecutor)]
this.inputs = [
{
label: 'Tools',
name: 'tools',
type: 'Tool',
list: true
},
{
label: 'Memory',
name: 'memory',
type: 'BaseChatMemory'
},
{
label: 'Tool Calling Chat Model',
name: 'model',
type: 'BaseChatModel',
description:
'Only compatible with models that are capable of function calling. ChatOpenAI, ChatMistral, ChatAnthropic, ChatVertexAI'
},
{
label: 'System Message',
name: 'systemMessage',
type: 'string',
description: 'Taking the rephrased question, search for answer from the provided context',
warning: 'Prompt must include input variable: {context}',
rows: 4,
additionalParams: true,
optional: true,
default: RESPONSE_TEMPLATE
},
{
label: 'Rephrase Prompt',
name: 'rephrasePrompt',
type: 'string',
description: 'Using previous chat history, rephrase question into a standalone question',
warning: 'Prompt must include input variables: {chat_history} and {question}',
rows: 4,
additionalParams: true,
optional: true,
default: REPHRASE_TEMPLATE
},
{
label: 'Rephrase Model',
name: 'rephraseModel',
type: 'BaseChatModel',
description:
'Optional: Use a different (faster/cheaper) model for rephrasing. If not specified, uses the main Tool Calling Chat Model.',
optional: true,
additionalParams: true
},
{
label: 'Input Moderation',
description: 'Detect text that could generate harmful output and prevent it from being sent to the language model',
name: 'inputModeration',
type: 'Moderation',
optional: true,
list: true
},
{
label: 'Max Iterations',
name: 'maxIterations',
type: 'number',
optional: true,
additionalParams: true
},
{
label: 'Vector Store Retriever',
name: 'vectorStoreRetriever',
type: 'BaseRetriever'
}
]
this.sessionId = fields?.sessionId
}
// The agent will be prepared in run() with the correct user message - it needs the actual runtime input for rephrasing
async init(_nodeData: INodeData, _input: string, _options: ICommonObject): Promise<any> {
return null
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | ICommonObject> {
const memory = nodeData.inputs?.memory as FlowiseMemory
const moderations = nodeData.inputs?.inputModeration as Moderation[]
const shouldStreamResponse = options.shouldStreamResponse
const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer
const chatId = options.chatId
if (moderations && moderations.length > 0) {
try {
// Use the output of the moderation chain as input for the OpenAI Function Agent
input = await checkInputs(moderations, input)
} catch (e) {
await new Promise((resolve) => setTimeout(resolve, 500))
if (shouldStreamResponse) {
streamResponse(sseStreamer, chatId, e.message)
}
return formatResponse(e.message)
}
}
const executor = await prepareAgent(nodeData, options, { sessionId: this.sessionId, chatId: options.chatId, input })
const loggerHandler = new ConsoleCallbackHandler(options.logger, options?.orgId)
const callbacks = await additionalCallbacks(nodeData, options)
let res: ChainValues = {}
let sourceDocuments: ICommonObject[] = []
let usedTools: IUsedTool[] = []
if (shouldStreamResponse) {
const handler = new CustomChainHandler(sseStreamer, chatId)
res = await executor.invoke({ input }, { callbacks: [loggerHandler, handler, ...callbacks] })
if (res.sourceDocuments) {
sseStreamer.streamSourceDocumentsEvent(chatId, flatten(res.sourceDocuments))
sourceDocuments = res.sourceDocuments
}
if (res.usedTools) {
sseStreamer.streamUsedToolsEvent(chatId, res.usedTools)
usedTools = res.usedTools
}
// If the tool is set to returnDirect, stream the output to the client
if (res.usedTools && res.usedTools.length) {
let inputTools = nodeData.inputs?.tools
inputTools = flatten(inputTools)
for (const tool of res.usedTools) {
const inputTool = inputTools.find((inputTool: Tool) => inputTool.name === tool.tool)
if (inputTool && (inputTool as any).returnDirect && shouldStreamResponse) {
sseStreamer.streamTokenEvent(chatId, tool.toolOutput)
// Prevent CustomChainHandler from streaming the same output again
if (res.output === tool.toolOutput) {
res.output = ''
}
}
}
}
// The CustomChainHandler will send the stream end event
} else {
res = await executor.invoke({ input }, { callbacks: [loggerHandler, ...callbacks] })
if (res.sourceDocuments) {
sourceDocuments = res.sourceDocuments
}
if (res.usedTools) {
usedTools = res.usedTools
}
}
let output = res?.output as string
// Claude 3 Opus tends to spit out <thinking>..</thinking> as well, discard that in final output
const regexPattern: RegExp = /<thinking>[\s\S]*?<\/thinking>/
const matches: RegExpMatchArray | null = output.match(regexPattern)
if (matches) {
for (const match of matches) {
output = output.replace(match, '')
}
}
await memory.addChatMessages(
[
{
text: input,
type: 'userMessage'
},
{
text: output,
type: 'apiMessage'
}
],
this.sessionId
)
let finalRes = res?.output
if (sourceDocuments.length || usedTools.length) {
const finalRes: ICommonObject = { text: output }
if (sourceDocuments.length) {
finalRes.sourceDocuments = flatten(sourceDocuments)
}
if (usedTools.length) {
finalRes.usedTools = usedTools
}
return finalRes
}
return finalRes
}
}
const formatDocs = (docs: Document[]) => {
return docs.map((doc, i) => `<doc id='${i}'>${doc.pageContent}</doc>`).join('\n')
}
const prepareAgent = async (
nodeData: INodeData,
options: ICommonObject,
flowObj: { sessionId?: string; chatId?: string; input?: string }
) => {
const model = nodeData.inputs?.model as BaseChatModel
const rephraseModel = (nodeData.inputs?.rephraseModel as BaseChatModel) || model // Use main model if not specified
const maxIterations = nodeData.inputs?.maxIterations as string
const memory = nodeData.inputs?.memory as FlowiseMemory
let systemMessage = nodeData.inputs?.systemMessage as string
let rephrasePrompt = nodeData.inputs?.rephrasePrompt as string
let tools = nodeData.inputs?.tools
tools = flatten(tools)
const memoryKey = memory.memoryKey ? memory.memoryKey : 'chat_history'
const inputKey = memory.inputKey ? memory.inputKey : 'input'
const vectorStoreRetriever = nodeData.inputs?.vectorStoreRetriever as BaseRetriever
systemMessage = transformBracesWithColon(systemMessage)
if (rephrasePrompt) {
rephrasePrompt = transformBracesWithColon(rephrasePrompt)
}
const prompt = ChatPromptTemplate.fromMessages([
['system', systemMessage ? systemMessage : `You are a helpful AI assistant.`],
new MessagesPlaceholder(memoryKey),
['human', `{${inputKey}}`],
new MessagesPlaceholder('agent_scratchpad')
])
if (llmSupportsVision(model)) {
const visionChatModel = model as IVisionChatModal
const messageContent = await addImagesToMessages(nodeData, options, model.multiModalOption)
if (messageContent?.length) {
visionChatModel.setVisionModel()
// Pop the `agent_scratchpad` MessagePlaceHolder
let messagePlaceholder = prompt.promptMessages.pop() as MessagesPlaceholder
if (prompt.promptMessages.at(-1) instanceof HumanMessagePromptTemplate) {
const lastMessage = prompt.promptMessages.pop() as HumanMessagePromptTemplate
const template = (lastMessage.prompt as PromptTemplate).template as string
const msg = HumanMessagePromptTemplate.fromTemplate([
...messageContent,
{
text: template
}
])
msg.inputVariables = lastMessage.inputVariables
prompt.promptMessages.push(msg)
}
// Add the `agent_scratchpad` MessagePlaceHolder back
prompt.promptMessages.push(messagePlaceholder)
} else {
visionChatModel.revertToOriginalModel()
}
}
if (model.bindTools === undefined) {
throw new Error(`This agent requires that the "bindTools()" method be implemented on the input model.`)
}
const modelWithTools = model.bindTools(tools)
// Function to get standalone question (either rephrased or original)
const getStandaloneQuestion = async (input: string): Promise<string> => {
// If no rephrase prompt, return the original input
if (!rephrasePrompt) {
return input
}
// Get chat history (use empty string if none)
const messages = (await memory.getChatMessages(flowObj?.sessionId, true)) as BaseMessage[]
const iMessages = convertBaseMessagetoIMessage(messages)
const chatHistoryString = convertChatHistoryToText(iMessages)
// Always rephrase to normalize/expand user queries for better retrieval
try {
const CONDENSE_QUESTION_PROMPT = PromptTemplate.fromTemplate(rephrasePrompt)
const condenseQuestionChain = RunnableSequence.from([CONDENSE_QUESTION_PROMPT, rephraseModel, new StringOutputParser()])
const res = await condenseQuestionChain.invoke({
question: input,
chat_history: chatHistoryString
})
return res
} catch (error) {
console.error('Error rephrasing question:', error)
// On error, fall back to original input
return input
}
}
// Get standalone question before creating runnable
const standaloneQuestion = await getStandaloneQuestion(flowObj?.input || '')
const runnableAgent = RunnableSequence.from([
{
[inputKey]: (i: { input: string; steps: ToolsAgentStep[] }) => i.input,
agent_scratchpad: (i: { input: string; steps: ToolsAgentStep[] }) => formatToOpenAIToolMessages(i.steps),
[memoryKey]: async (_: { input: string; steps: ToolsAgentStep[] }) => {
const messages = (await memory.getChatMessages(flowObj?.sessionId, true)) as BaseMessage[]
return messages ?? []
},
context: async (i: { input: string; chatHistory?: string }) => {
// Use the standalone question (rephrased or original) for retrieval
const retrievalQuery = standaloneQuestion || i.input
const relevantDocs = await vectorStoreRetriever.invoke(retrievalQuery)
const formattedDocs = formatDocs(relevantDocs)
return formattedDocs
}
},
prompt,
modelWithTools,
new ToolCallingAgentOutputParser()
])
const executor = AgentExecutor.fromAgentAndTools({
agent: runnableAgent,
tools,
sessionId: flowObj?.sessionId,
chatId: flowObj?.chatId,
input: flowObj?.input,
verbose: process.env.DEBUG === 'true' ? true : false,
maxIterations: maxIterations ? parseFloat(maxIterations) : undefined
})
return executor
}
module.exports = {
nodeClass: ConversationalRetrievalToolAgent_Agents
}