158 lines
5.6 KiB
TypeScript
158 lines
5.6 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { Client } from '@opensearch-project/opensearch'
|
|
import { Document } from '@langchain/core/documents'
|
|
import { OpenSearchVectorStore } from '@langchain/community/vectorstores/opensearch'
|
|
import { Embeddings } from '@langchain/core/embeddings'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
|
|
class OpenSearch_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
outputs: INodeOutputsValue[]
|
|
credential: INodeParams
|
|
|
|
constructor() {
|
|
this.label = 'OpenSearch'
|
|
this.name = 'openSearch'
|
|
this.version = 3.0
|
|
this.type = 'OpenSearch'
|
|
this.icon = 'opensearch.svg'
|
|
this.category = 'Vector Stores'
|
|
this.description = `Upsert embedded data and perform similarity search upon query using OpenSearch, an open-source, all-in-one vector database`
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['openSearchUrl']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Index Name',
|
|
name: 'indexName',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'OpenSearch Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'OpenSearch Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(OpenSearchVectorStore)]
|
|
}
|
|
]
|
|
}
|
|
|
|
//@ts-ignore
|
|
vectorStoreMethods = {
|
|
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const opensearchURL = getCredentialParam('openSearchUrl', credentialData, nodeData)
|
|
const user = getCredentialParam('user', credentialData, nodeData)
|
|
const password = getCredentialParam('password', credentialData, nodeData)
|
|
|
|
const client = getOpenSearchClient(opensearchURL, user, password)
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
}
|
|
|
|
try {
|
|
await OpenSearchVectorStore.fromDocuments(finalDocs, embeddings, {
|
|
client,
|
|
indexName: indexName
|
|
})
|
|
return { numAdded: finalDocs.length, addedDocs: finalDocs }
|
|
} catch (e) {
|
|
throw new Error(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
const output = nodeData.outputs?.output as string
|
|
const topK = nodeData.inputs?.topK as string
|
|
const k = topK ? parseFloat(topK) : 4
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const opensearchURL = getCredentialParam('openSearchUrl', credentialData, nodeData)
|
|
const user = getCredentialParam('user', credentialData, nodeData)
|
|
const password = getCredentialParam('password', credentialData, nodeData)
|
|
|
|
const client = getOpenSearchClient(opensearchURL, user, password)
|
|
|
|
const vectorStore = new OpenSearchVectorStore(embeddings, {
|
|
client,
|
|
indexName
|
|
})
|
|
|
|
if (output === 'retriever') {
|
|
const retriever = vectorStore.asRetriever(k)
|
|
return retriever
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
}
|
|
|
|
const getOpenSearchClient = (url: string, user?: string, password?: string): Client => {
|
|
if (user && password) {
|
|
const urlObj = new URL(url)
|
|
urlObj.username = user
|
|
urlObj.password = password
|
|
url = urlObj.toString()
|
|
}
|
|
|
|
return new Client({
|
|
nodes: [url]
|
|
})
|
|
}
|
|
|
|
module.exports = { nodeClass: OpenSearch_VectorStores }
|