Flowise/packages/components/nodes/vectorstores/Postgres/Postgres.ts

371 lines
13 KiB
TypeScript

import { flatten } from 'lodash'
import { Document } from '@langchain/core/documents'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
import { FLOWISE_CHATID, getBaseClasses, parseJsonBody } from '../../../src/utils'
import { index } from '../../../src/indexing'
import { howToUseFileUpload } from '../VectorStoreUtils'
import { VectorStore } from '@langchain/core/vectorstores'
import { VectorStoreDriver } from './driver/Base'
import { TypeORMDriver } from './driver/TypeORM'
// import { PGVectorDriver } from './driver/PGVector'
import { getContentColumnName, getDatabase, getHost, getPort, getTableName } from './utils'
const serverCredentialsExists = !!process.env.POSTGRES_VECTORSTORE_USER && !!process.env.POSTGRES_VECTORSTORE_PASSWORD
// added temporarily to fix the base class return for VectorStore when postgres node is using TypeORM
function getVectorStoreBaseClasses() {
// Try getting base classes through the utility function
const baseClasses = getBaseClasses(VectorStore)
// If we got results, return them
if (baseClasses && baseClasses.length > 0) {
return baseClasses
}
// If VectorStore is recognized as a class but getBaseClasses returned nothing,
// return the known inheritance chain
if (VectorStore instanceof Function) {
return ['VectorStore']
}
// Fallback to minimum required class
return ['VectorStore']
}
class Postgres_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Postgres'
this.name = 'postgres'
this.version = 7.1
this.type = 'Postgres'
this.icon = 'postgres.svg'
this.category = 'Vector Stores'
this.description = 'Upsert embedded data and perform similarity search upon query using pgvector on Postgres'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['PostgresApi'],
optional: serverCredentialsExists
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Record Manager',
name: 'recordManager',
type: 'RecordManager',
description: 'Keep track of the record to prevent duplication',
optional: true
},
{
label: 'Host',
name: 'host',
type: 'string',
placeholder: getHost(),
optional: !!getHost()
},
{
label: 'Database',
name: 'database',
type: 'string',
placeholder: getDatabase(),
optional: !!getDatabase()
},
{
label: 'Port',
name: 'port',
type: 'number',
placeholder: getPort(),
optional: true
},
{
label: 'SSL',
name: 'ssl',
description: 'Use SSL to connect to Postgres',
type: 'boolean',
additionalParams: true,
optional: true
},
{
label: 'Table Name',
name: 'tableName',
type: 'string',
placeholder: getTableName(),
additionalParams: true,
optional: true
},
/*{
label: 'Driver',
name: 'driver',
type: 'options',
default: 'typeorm',
description: 'Different option to connect to Postgres',
options: [
{
label: 'TypeORM',
name: 'typeorm'
},
{
label: 'PGVector',
name: 'pgvector'
}
],
optional: true,
additionalParams: true
},*/
{
label: 'Distance Strategy',
name: 'distanceStrategy',
description: 'Strategy for calculating distances between vectors',
type: 'options',
options: [
{
label: 'Cosine',
name: 'cosine'
},
{
label: 'Euclidean',
name: 'euclidean'
},
{
label: 'Inner Product',
name: 'innerProduct'
}
],
additionalParams: true,
default: 'cosine',
optional: true
},
{
label: 'File Upload',
name: 'fileUpload',
description: 'Allow file upload on the chat',
hint: {
label: 'How to use',
value: howToUseFileUpload
},
type: 'boolean',
additionalParams: true,
optional: true
},
{
label: 'Upsert Batch Size',
name: 'batchSize',
type: 'number',
step: 1,
description: 'Upsert in batches of size N',
additionalParams: true,
optional: true
},
{
label: 'Additional Configuration',
name: 'additionalConfig',
type: 'json',
additionalParams: true,
optional: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Postgres Metadata Filter',
name: 'pgMetadataFilter',
type: 'json',
additionalParams: true,
optional: true,
acceptVariable: true
},
{
label: 'Content Column Name',
name: 'contentColumnName',
description: 'Column name to store the text content (PGVector Driver only, others use pageContent)',
type: 'string',
placeholder: getContentColumnName(),
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Postgres Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Postgres Vector Store',
name: 'vectorStore',
baseClasses: [
this.type,
// ...getBaseClasses(VectorStore), // disabled temporarily for using TypeORM
...getVectorStoreBaseClasses() // added temporarily for using TypeORM
]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
const tableName = getTableName(nodeData)
const docs = nodeData.inputs?.document as Document[]
const recordManager = nodeData.inputs?.recordManager
const isFileUploadEnabled = nodeData.inputs?.fileUpload as boolean
const _batchSize = nodeData.inputs?.batchSize
const vectorStoreDriver: VectorStoreDriver = Postgres_VectorStores.getDriverFromConfig(nodeData, options)
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
if (isFileUploadEnabled && options.chatId) {
flattenDocs[i].metadata = { ...flattenDocs[i].metadata, [FLOWISE_CHATID]: options.chatId }
}
finalDocs.push(new Document(flattenDocs[i]))
}
}
try {
if (recordManager) {
const vectorStore = await vectorStoreDriver.instanciate()
await recordManager.createSchema()
const res = await index({
docsSource: finalDocs,
recordManager,
vectorStore,
options: {
cleanup: recordManager?.cleanup,
sourceIdKey: recordManager?.sourceIdKey ?? 'source',
vectorStoreName: tableName
}
})
return res
} else {
if (_batchSize) {
const batchSize = parseInt(_batchSize, 10)
for (let i = 0; i < finalDocs.length; i += batchSize) {
const batch = finalDocs.slice(i, i + batchSize)
await vectorStoreDriver.fromDocuments(batch)
}
} else {
await vectorStoreDriver.fromDocuments(finalDocs)
}
return { numAdded: finalDocs.length, addedDocs: finalDocs }
}
} catch (e) {
throw new Error(e)
}
},
async delete(nodeData: INodeData, ids: string[], options: ICommonObject): Promise<void> {
const vectorStoreDriver: VectorStoreDriver = Postgres_VectorStores.getDriverFromConfig(nodeData, options)
const tableName = getTableName(nodeData)
const recordManager = nodeData.inputs?.recordManager
const vectorStore = await vectorStoreDriver.instanciate()
try {
if (recordManager) {
const vectorStoreName = tableName
await recordManager.createSchema()
;(recordManager as any).namespace = (recordManager as any).namespace + '_' + vectorStoreName
const filterKeys: ICommonObject = {}
if (options.docId) {
filterKeys.docId = options.docId
}
const keys: string[] = await recordManager.listKeys(filterKeys)
await vectorStore.delete({ ids: keys })
await recordManager.deleteKeys(keys)
} else {
await vectorStore.delete({ ids })
}
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const vectorStoreDriver: VectorStoreDriver = Postgres_VectorStores.getDriverFromConfig(nodeData, options)
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const _pgMetadataFilter = nodeData.inputs?.pgMetadataFilter
const isFileUploadEnabled = nodeData.inputs?.fileUpload as boolean
let pgMetadataFilter: any
if (_pgMetadataFilter) {
pgMetadataFilter = typeof _pgMetadataFilter === 'object' ? _pgMetadataFilter : parseJsonBody(_pgMetadataFilter)
}
if (isFileUploadEnabled && options.chatId) {
pgMetadataFilter = {
...(pgMetadataFilter || {}),
[FLOWISE_CHATID]: options.chatId
}
}
const vectorStore = await vectorStoreDriver.instanciate(pgMetadataFilter)
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(k)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
if (pgMetadataFilter) {
;(vectorStore as any).filter = pgMetadataFilter
}
return vectorStore
}
return vectorStore
}
static getDriverFromConfig(nodeData: INodeData, options: ICommonObject): VectorStoreDriver {
/*switch (nodeData.inputs?.driver) {
case 'typeorm':
return new TypeORMDriver(nodeData, options)
case 'pgvector':
return new PGVectorDriver(nodeData, options)
default:
return new TypeORMDriver(nodeData, options)
}*/
return new TypeORMDriver(nodeData, options)
}
}
module.exports = { nodeClass: Postgres_VectorStores }