Flowise/packages/components/nodes/vectorstores/Pinecone/Pinecone.ts

180 lines
6.3 KiB
TypeScript

import { flatten } from 'lodash'
import { Pinecone } from '@pinecone-database/pinecone'
import { PineconeStoreParams, PineconeStore } from '@langchain/pinecone'
import { Embeddings } from '@langchain/core/embeddings'
import { Document } from '@langchain/core/documents'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils'
class Pinecone_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Pinecone'
this.name = 'pinecone'
this.version = 2.0
this.type = 'Pinecone'
this.icon = 'pinecone.svg'
this.category = 'Vector Stores'
this.description = `Upsert embedded data and perform similarity or mmr search using Pinecone, a leading fully managed hosted vector database`
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'NEW'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['pineconeApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Pinecone Index',
name: 'pineconeIndex',
type: 'string'
},
{
label: 'Pinecone Namespace',
name: 'pineconeNamespace',
type: 'string',
placeholder: 'my-first-namespace',
additionalParams: true,
optional: true
},
{
label: 'Pinecone Metadata Filter',
name: 'pineconeMetadataFilter',
type: 'json',
optional: true,
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
addMMRInputParams(this.inputs)
this.outputs = [
{
label: 'Pinecone Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Pinecone Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(PineconeStore)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<void> {
const index = nodeData.inputs?.pineconeIndex as string
const pineconeNamespace = nodeData.inputs?.pineconeNamespace as string
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const pineconeApiKey = getCredentialParam('pineconeApiKey', credentialData, nodeData)
const client = new Pinecone({
apiKey: pineconeApiKey
})
const pineconeIndex = client.Index(index)
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
const obj: PineconeStoreParams = {
pineconeIndex
}
if (pineconeNamespace) obj.namespace = pineconeNamespace
try {
await PineconeStore.fromDocuments(finalDocs, embeddings, obj)
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const index = nodeData.inputs?.pineconeIndex as string
const pineconeNamespace = nodeData.inputs?.pineconeNamespace as string
const pineconeMetadataFilter = nodeData.inputs?.pineconeMetadataFilter
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const pineconeApiKey = getCredentialParam('pineconeApiKey', credentialData, nodeData)
const client = new Pinecone({
apiKey: pineconeApiKey
})
await client.describeIndex(index)
const pineconeIndex = client.Index(index)
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
const obj: PineconeStoreParams = {
pineconeIndex
}
if (pineconeNamespace) obj.namespace = pineconeNamespace
if (pineconeMetadataFilter) {
const metadatafilter = typeof pineconeMetadataFilter === 'object' ? pineconeMetadataFilter : JSON.parse(pineconeMetadataFilter)
obj.filter = metadatafilter
}
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, obj)
return resolveVectorStoreOrRetriever(nodeData, vectorStore)
}
}
module.exports = { nodeClass: Pinecone_VectorStores }