180 lines
6.3 KiB
TypeScript
180 lines
6.3 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { Pinecone } from '@pinecone-database/pinecone'
|
|
import { PineconeStoreParams, PineconeStore } from '@langchain/pinecone'
|
|
import { Embeddings } from '@langchain/core/embeddings'
|
|
import { Document } from '@langchain/core/documents'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils'
|
|
|
|
class Pinecone_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Pinecone'
|
|
this.name = 'pinecone'
|
|
this.version = 2.0
|
|
this.type = 'Pinecone'
|
|
this.icon = 'pinecone.svg'
|
|
this.category = 'Vector Stores'
|
|
this.description = `Upsert embedded data and perform similarity or mmr search using Pinecone, a leading fully managed hosted vector database`
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.badge = 'NEW'
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['pineconeApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Pinecone Index',
|
|
name: 'pineconeIndex',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Pinecone Namespace',
|
|
name: 'pineconeNamespace',
|
|
type: 'string',
|
|
placeholder: 'my-first-namespace',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Pinecone Metadata Filter',
|
|
name: 'pineconeMetadataFilter',
|
|
type: 'json',
|
|
optional: true,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
addMMRInputParams(this.inputs)
|
|
this.outputs = [
|
|
{
|
|
label: 'Pinecone Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Pinecone Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(PineconeStore)]
|
|
}
|
|
]
|
|
}
|
|
|
|
//@ts-ignore
|
|
vectorStoreMethods = {
|
|
async upsert(nodeData: INodeData, options: ICommonObject): Promise<void> {
|
|
const index = nodeData.inputs?.pineconeIndex as string
|
|
const pineconeNamespace = nodeData.inputs?.pineconeNamespace as string
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const pineconeApiKey = getCredentialParam('pineconeApiKey', credentialData, nodeData)
|
|
|
|
const client = new Pinecone({
|
|
apiKey: pineconeApiKey
|
|
})
|
|
|
|
const pineconeIndex = client.Index(index)
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
}
|
|
|
|
const obj: PineconeStoreParams = {
|
|
pineconeIndex
|
|
}
|
|
|
|
if (pineconeNamespace) obj.namespace = pineconeNamespace
|
|
|
|
try {
|
|
await PineconeStore.fromDocuments(finalDocs, embeddings, obj)
|
|
} catch (e) {
|
|
throw new Error(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const index = nodeData.inputs?.pineconeIndex as string
|
|
const pineconeNamespace = nodeData.inputs?.pineconeNamespace as string
|
|
const pineconeMetadataFilter = nodeData.inputs?.pineconeMetadataFilter
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const pineconeApiKey = getCredentialParam('pineconeApiKey', credentialData, nodeData)
|
|
|
|
const client = new Pinecone({
|
|
apiKey: pineconeApiKey
|
|
})
|
|
|
|
await client.describeIndex(index)
|
|
|
|
const pineconeIndex = client.Index(index)
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
}
|
|
|
|
const obj: PineconeStoreParams = {
|
|
pineconeIndex
|
|
}
|
|
|
|
if (pineconeNamespace) obj.namespace = pineconeNamespace
|
|
if (pineconeMetadataFilter) {
|
|
const metadatafilter = typeof pineconeMetadataFilter === 'object' ? pineconeMetadataFilter : JSON.parse(pineconeMetadataFilter)
|
|
obj.filter = metadatafilter
|
|
}
|
|
|
|
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, obj)
|
|
|
|
return resolveVectorStoreOrRetriever(nodeData, vectorStore)
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: Pinecone_VectorStores }
|