Flowise/packages/components/nodes/agents/CSVAgent/CSVAgent.ts

143 lines
4.5 KiB
TypeScript

import { INode, INodeData, INodeParams, PromptTemplate } from '../../../src/Interface'
import { AgentExecutor } from 'langchain/agents'
import { getBaseClasses } from '../../../src/utils'
import { LoadPyodide, finalSystemPrompt, systemPrompt } from './core'
import { LLMChain } from 'langchain/chains'
import { BaseLanguageModel } from 'langchain/base_language'
class CSV_Agents implements INode {
label: string
name: string
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
constructor() {
this.label = 'CSV Agent'
this.name = 'csvAgentLLM'
this.type = 'AgentExecutor'
this.category = 'Agents'
this.icon = 'csvagent.png'
this.description = 'Agent used to to answer queries on CSV data'
this.baseClasses = [this.type, ...getBaseClasses(AgentExecutor)]
this.inputs = [
{
label: 'Csv File',
name: 'csvFile',
type: 'file',
fileType: '.csv'
},
{
label: 'Language Model',
name: 'model',
type: 'BaseLanguageModel'
}
]
}
async init(): Promise<any> {
// Not used
return undefined
}
async run(nodeData: INodeData, input: string): Promise<string> {
const csvFileBase64 = nodeData.inputs?.csvFile as string
const model = nodeData.inputs?.model as BaseLanguageModel
let files: string[] = []
if (csvFileBase64.startsWith('[') && csvFileBase64.endsWith(']')) {
files = JSON.parse(csvFileBase64)
} else {
files = [csvFileBase64]
}
let base64String = ''
for (const file of files) {
const splitDataURI = file.split(',')
splitDataURI.pop()
base64String = splitDataURI.pop() ?? ''
}
const pyodide = await LoadPyodide()
// First load the csv file and get the dataframe dictionary of column types
// For example using titanic.csv: {'PassengerId': 'int64', 'Survived': 'int64', 'Pclass': 'int64', 'Name': 'object', 'Sex': 'object', 'Age': 'float64', 'SibSp': 'int64', 'Parch': 'int64', 'Ticket': 'object', 'Fare': 'float64', 'Cabin': 'object', 'Embarked': 'object'}
let executionResult = ''
try {
const code = `import pandas as pd
import base64
from io import StringIO
import json
base64_string = "${base64String}"
decoded_data = base64.b64decode(base64_string)
csv_data = StringIO(decoded_data.decode('utf-8'))
df = pd.read_csv(csv_data)
my_dict = df.dtypes.astype(str).to_dict()
print(my_dict)
json.dumps(my_dict)`
executionResult = await pyodide.runPythonAsync(code)
} catch (error) {
throw new Error(error)
}
console.log('executionResult= ', executionResult)
// Then tell GPT to come out with ONLY python code
// For example: len(df), df[df['SibSp'] > 3]['PassengerId'].count()
let pythonCode = ''
if (executionResult) {
const chain = new LLMChain({
llm: model,
prompt: PromptTemplate.fromTemplate(systemPrompt),
verbose: process.env.DEBUG === 'true' ? true : false
})
const inputs = {
dict: executionResult,
question: input
}
const res = await chain.call(inputs)
pythonCode = res?.text
}
console.log('pythonCode= ', pythonCode)
// Then run the code using Pyodide
let finalResult = ''
if (pythonCode) {
try {
const code = `import pandas as pd\n${pythonCode}`
finalResult = await pyodide.runPythonAsync(code)
} catch (error) {
throw new Error(error)
}
}
console.log('finalResult= ', finalResult)
// Finally, return a complete answer
if (finalResult) {
const chain = new LLMChain({
llm: model,
prompt: PromptTemplate.fromTemplate(finalSystemPrompt),
verbose: process.env.DEBUG === 'true' ? true : false
})
const inputs = {
question: input,
answer: finalResult
}
const res = await chain.call(inputs)
return res?.text
}
return executionResult
}
}
module.exports = { nodeClass: CSV_Agents }