Flowise/packages/components/nodes/documentloaders/S3File/S3File.ts

1036 lines
39 KiB
TypeScript

import { ICommonObject, INode, INodeData, INodeOptionsValue, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { S3Loader } from '@langchain/community/document_loaders/web/s3'
import {
UnstructuredLoader,
UnstructuredLoaderOptions,
UnstructuredLoaderStrategy,
SkipInferTableTypes,
HiResModelName
} from '@langchain/community/document_loaders/fs/unstructured'
import {
getCredentialData,
getCredentialParam,
handleDocumentLoaderDocuments,
handleDocumentLoaderMetadata,
handleDocumentLoaderOutput
} from '../../../src/utils'
import { S3Client, GetObjectCommand, HeadObjectCommand, S3ClientConfig } from '@aws-sdk/client-s3'
import { getRegions, MODEL_TYPE } from '../../../src/modelLoader'
import { Readable } from 'node:stream'
import * as fsDefault from 'node:fs'
import * as path from 'node:path'
import * as os from 'node:os'
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf'
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx'
import { CSVLoader } from '@langchain/community/document_loaders/fs/csv'
import { LoadOfSheet } from '../MicrosoftExcel/ExcelLoader'
import { PowerpointLoader } from '../MicrosoftPowerpoint/PowerpointLoader'
import { TextSplitter } from 'langchain/text_splitter'
import { IDocument } from '../../../src/Interface'
import { omit } from 'lodash'
import { handleEscapeCharacters } from '../../../src'
class S3_DocumentLoaders implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
credential: INodeParams
inputs?: INodeParams[]
outputs: INodeOutputsValue[]
constructor() {
this.label = 'S3'
this.name = 'S3'
this.version = 5.0
this.type = 'Document'
this.icon = 's3.svg'
this.category = 'Document Loaders'
this.description = 'Load Data from S3 Buckets'
this.baseClasses = [this.type]
this.credential = {
label: 'AWS Credential',
name: 'credential',
type: 'credential',
credentialNames: ['awsApi'],
optional: true
}
this.inputs = [
{
label: 'Bucket',
name: 'bucketName',
type: 'string'
},
{
label: 'Object Key',
name: 'keyName',
type: 'string',
description: 'The object key (or key name) that uniquely identifies object in an Amazon S3 bucket',
placeholder: 'AI-Paper.pdf'
},
{
label: 'Region',
name: 'region',
type: 'asyncOptions',
loadMethod: 'listRegions',
default: 'us-east-1'
},
{
label: 'File Processing Method',
name: 'fileProcessingMethod',
type: 'options',
options: [
{
label: 'Built In Loaders',
name: 'builtIn',
description: 'Use the built in loaders to process the file.'
},
{
label: 'Unstructured',
name: 'unstructured',
description: 'Use the Unstructured API to process the file.'
}
],
default: 'builtIn'
},
{
label: 'Text Splitter',
name: 'textSplitter',
type: 'TextSplitter',
optional: true,
show: {
fileProcessingMethod: 'builtIn'
}
},
{
label: 'Additional Metadata',
name: 'metadata',
type: 'json',
description: 'Additional metadata to be added to the extracted documents',
optional: true,
additionalParams: true
},
{
label: 'Omit Metadata Keys',
name: 'omitMetadataKeys',
type: 'string',
rows: 4,
description:
'Each document loader comes with a default set of metadata keys that are extracted from the document. You can use this field to omit some of the default metadata keys. The value should be a list of keys, seperated by comma. Use * to omit all metadata keys execept the ones you specify in the Additional Metadata field',
placeholder: 'key1, key2, key3.nestedKey1',
optional: true,
additionalParams: true
},
{
label: 'Unstructured API URL',
name: 'unstructuredAPIUrl',
description:
'Your Unstructured.io URL. Read <a target="_blank" href="https://unstructured-io.github.io/unstructured/introduction.html#getting-started">more</a> on how to get started',
type: 'string',
placeholder: process.env.UNSTRUCTURED_API_URL || 'http://localhost:8000/general/v0/general',
optional: !!process.env.UNSTRUCTURED_API_URL,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Unstructured API KEY',
name: 'unstructuredAPIKey',
type: 'password',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Strategy',
name: 'strategy',
description: 'The strategy to use for partitioning PDF/image. Options are fast, hi_res, auto. Default: auto.',
type: 'options',
options: [
{
label: 'Hi-Res',
name: 'hi_res'
},
{
label: 'Fast',
name: 'fast'
},
{
label: 'OCR Only',
name: 'ocr_only'
},
{
label: 'Auto',
name: 'auto'
}
],
optional: true,
additionalParams: true,
default: 'auto',
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Encoding',
name: 'encoding',
description: 'The encoding method used to decode the text input. Default: utf-8.',
type: 'string',
optional: true,
additionalParams: true,
default: 'utf-8',
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Skip Infer Table Types',
name: 'skipInferTableTypes',
description: 'The document types that you want to skip table extraction with. Default: pdf, jpg, png.',
type: 'multiOptions',
options: [
{
label: 'doc',
name: 'doc'
},
{
label: 'docx',
name: 'docx'
},
{
label: 'eml',
name: 'eml'
},
{
label: 'epub',
name: 'epub'
},
{
label: 'heic',
name: 'heic'
},
{
label: 'htm',
name: 'htm'
},
{
label: 'html',
name: 'html'
},
{
label: 'jpeg',
name: 'jpeg'
},
{
label: 'jpg',
name: 'jpg'
},
{
label: 'md',
name: 'md'
},
{
label: 'msg',
name: 'msg'
},
{
label: 'odt',
name: 'odt'
},
{
label: 'pdf',
name: 'pdf'
},
{
label: 'png',
name: 'png'
},
{
label: 'ppt',
name: 'ppt'
},
{
label: 'pptx',
name: 'pptx'
},
{
label: 'rtf',
name: 'rtf'
},
{
label: 'text',
name: 'text'
},
{
label: 'txt',
name: 'txt'
},
{
label: 'xls',
name: 'xls'
},
{
label: 'xlsx',
name: 'xlsx'
}
],
optional: true,
additionalParams: true,
default: '["pdf", "jpg", "png"]',
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Hi-Res Model Name',
name: 'hiResModelName',
description: 'The name of the inference model used when strategy is hi_res. Default: detectron2_onnx.',
type: 'options',
options: [
{
label: 'chipper',
name: 'chipper',
description:
'Exlusive to Unstructured hosted API. The Chipper model is Unstructured in-house image-to-text model based on transformer-based Visual Document Understanding (VDU) models.'
},
{
label: 'detectron2_onnx',
name: 'detectron2_onnx',
description:
'A Computer Vision model by Facebook AI that provides object detection and segmentation algorithms with ONNX Runtime. It is the fastest model with the hi_res strategy.'
},
{
label: 'yolox',
name: 'yolox',
description: 'A single-stage real-time object detector that modifies YOLOv3 with a DarkNet53 backbone.'
},
{
label: 'yolox_quantized',
name: 'yolox_quantized',
description: 'Runs faster than YoloX and its speed is closer to Detectron2.'
}
],
optional: true,
additionalParams: true,
default: 'detectron2_onnx',
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Chunking Strategy',
name: 'chunkingStrategy',
description:
'Use one of the supported strategies to chunk the returned elements. When omitted, no chunking is performed and any other chunking parameters provided are ignored. Default: by_title',
type: 'options',
options: [
{
label: 'None',
name: 'None'
},
{
label: 'By Title',
name: 'by_title'
}
],
optional: true,
additionalParams: true,
default: 'by_title',
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'OCR Languages',
name: 'ocrLanguages',
description: 'The languages to use for OCR. Note: Being depricated as languages is the new type. Pending langchain update.',
type: 'multiOptions',
options: [
{
label: 'English',
name: 'eng'
},
{
label: 'Spanish (Español)',
name: 'spa'
},
{
label: 'Mandarin Chinese (普通话)',
name: 'cmn'
},
{
label: 'Hindi (हिन्दी)',
name: 'hin'
},
{
label: 'Arabic (اَلْعَرَبِيَّةُ)',
name: 'ara'
},
{
label: 'Portuguese (Português)',
name: 'por'
},
{
label: 'Bengali (বাংলা)',
name: 'ben'
},
{
label: 'Russian (Русский)',
name: 'rus'
},
{
label: 'Japanese (日本語)',
name: 'jpn'
},
{
label: 'Punjabi (ਪੰਜਾਬੀ)',
name: 'pan'
},
{
label: 'German (Deutsch)',
name: 'deu'
},
{
label: 'Korean (한국어)',
name: 'kor'
},
{
label: 'French (Français)',
name: 'fra'
},
{
label: 'Italian (Italiano)',
name: 'ita'
},
{
label: 'Vietnamese (Tiếng Việt)',
name: 'vie'
}
],
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Source ID Key',
name: 'sourceIdKey',
type: 'string',
description:
'Key used to get the true source of document, to be compared against the record. Document metadata must contain the Source ID Key.',
default: 'source',
placeholder: 'source',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Coordinates',
name: 'coordinates',
type: 'boolean',
description: 'If true, return coordinates for each element. Default: false.',
optional: true,
additionalParams: true,
default: false,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'XML Keep Tags',
name: 'xmlKeepTags',
description:
'If True, will retain the XML tags in the output. Otherwise it will simply extract the text from within the tags. Only applies to partition_xml.',
type: 'boolean',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Include Page Breaks',
name: 'includePageBreaks',
description: 'When true, the output will include page break elements when the filetype supports it.',
type: 'boolean',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Multi-Page Sections',
name: 'multiPageSections',
description: 'Whether to treat multi-page documents as separate sections.',
type: 'boolean',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Combine Under N Chars',
name: 'combineUnderNChars',
description:
"If chunking strategy is set, combine elements until a section reaches a length of n chars. Default: value of max_characters. Can't exceed value of max_characters.",
type: 'number',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'New After N Chars',
name: 'newAfterNChars',
description:
"If chunking strategy is set, cut off new sections after reaching a length of n chars (soft max). value of max_characters. Can't exceed value of max_characters.",
type: 'number',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Max Characters',
name: 'maxCharacters',
description:
'If chunking strategy is set, cut off new sections after reaching a length of n chars (hard max). Default: 500',
type: 'number',
optional: true,
additionalParams: true,
default: '500',
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Additional Metadata',
name: 'metadata',
type: 'json',
description: 'Additional metadata to be added to the extracted documents',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
},
{
label: 'Omit Metadata Keys',
name: 'omitMetadataKeys',
type: 'string',
rows: 4,
description:
'Each document loader comes with a default set of metadata keys that are extracted from the document. You can use this field to omit some of the default metadata keys. The value should be a list of keys, seperated by comma. Use * to omit all metadata keys execept the ones you specify in the Additional Metadata field',
placeholder: 'key1, key2, key3.nestedKey1',
optional: true,
additionalParams: true,
show: {
fileProcessingMethod: 'unstructured'
}
}
]
this.outputs = [
{
label: 'Document',
name: 'document',
description: 'Array of document objects containing metadata and pageContent',
baseClasses: [...this.baseClasses, 'json']
},
{
label: 'Text',
name: 'text',
description: 'Concatenated string from pageContent of documents',
baseClasses: ['string', 'json']
}
]
}
loadMethods = {
async listRegions(): Promise<INodeOptionsValue[]> {
return await getRegions(MODEL_TYPE.CHAT, 'awsChatBedrock')
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const bucketName = nodeData.inputs?.bucketName as string
const keyName = nodeData.inputs?.keyName as string
const region = nodeData.inputs?.region as string
const fileProcessingMethod = nodeData.inputs?.fileProcessingMethod as string
const textSplitter = nodeData.inputs?.textSplitter as TextSplitter
const metadata = nodeData.inputs?.metadata
const _omitMetadataKeys = nodeData.inputs?.omitMetadataKeys as string
const output = nodeData.outputs?.output as string
let omitMetadataKeys: string[] = []
if (_omitMetadataKeys) {
omitMetadataKeys = _omitMetadataKeys.split(',').map((key) => key.trim())
}
let credentials: S3ClientConfig['credentials'] | undefined
if (nodeData.credential) {
const credentialData = await getCredentialData(nodeData.credential, options)
const accessKeyId = getCredentialParam('awsKey', credentialData, nodeData)
const secretAccessKey = getCredentialParam('awsSecret', credentialData, nodeData)
if (accessKeyId && secretAccessKey) {
credentials = {
accessKeyId,
secretAccessKey
}
}
}
const s3Config: S3ClientConfig = {
region,
credentials
}
if (fileProcessingMethod === 'builtIn') {
return await this.processWithBuiltInLoaders(
bucketName,
keyName,
s3Config,
textSplitter,
metadata,
omitMetadataKeys,
_omitMetadataKeys,
output
)
} else {
return await this.processWithUnstructured(nodeData, options, bucketName, keyName, s3Config)
}
}
private async processWithBuiltInLoaders(
bucketName: string,
keyName: string,
s3Config: S3ClientConfig,
textSplitter: TextSplitter,
metadata: any,
omitMetadataKeys: string[],
_omitMetadataKeys: string,
output: string
): Promise<any> {
let docs: IDocument[] = []
try {
const s3Client = new S3Client(s3Config)
// Get file metadata to determine content type
const headCommand = new HeadObjectCommand({
Bucket: bucketName,
Key: keyName
})
const headResponse = await s3Client.send(headCommand)
const contentType = headResponse.ContentType || this.getMimeTypeFromExtension(keyName)
// Download the file
const getObjectCommand = new GetObjectCommand({
Bucket: bucketName,
Key: keyName
})
const response = await s3Client.send(getObjectCommand)
const objectData = await new Promise<Buffer>((resolve, reject) => {
const chunks: Buffer[] = []
if (response.Body instanceof Readable) {
response.Body.on('data', (chunk: Buffer) => chunks.push(chunk))
response.Body.on('end', () => resolve(Buffer.concat(chunks)))
response.Body.on('error', reject)
} else {
reject(new Error('Response body is not a readable stream.'))
}
})
// Process the file based on content type
const fileInfo = {
id: keyName,
name: path.basename(keyName),
mimeType: contentType,
size: objectData.length,
webViewLink: `s3://${bucketName}/${keyName}`,
bucketName: bucketName,
key: keyName,
lastModified: headResponse.LastModified,
etag: headResponse.ETag
}
docs = await this.processFile(fileInfo, objectData)
// Apply text splitter if provided
if (textSplitter && docs.length > 0) {
docs = await textSplitter.splitDocuments(docs)
}
// Apply metadata transformations
if (metadata) {
const parsedMetadata = typeof metadata === 'object' ? metadata : JSON.parse(metadata)
docs = docs.map((doc) => ({
...doc,
metadata:
_omitMetadataKeys === '*'
? {
...parsedMetadata
}
: omit(
{
...doc.metadata,
...parsedMetadata
},
omitMetadataKeys
)
}))
} else {
docs = docs.map((doc) => ({
...doc,
metadata:
_omitMetadataKeys === '*'
? {}
: omit(
{
...doc.metadata
},
omitMetadataKeys
)
}))
}
} catch (error) {
throw new Error(`Failed to load S3 document: ${error.message}`)
}
if (output === 'document') {
return docs
} else {
let finaltext = ''
for (const doc of docs) {
finaltext += `${doc.pageContent}\n`
}
return handleEscapeCharacters(finaltext, false)
}
}
private async processWithUnstructured(
nodeData: INodeData,
options: ICommonObject,
bucketName: string,
keyName: string,
s3Config: S3ClientConfig
): Promise<any> {
const unstructuredAPIUrl = nodeData.inputs?.unstructuredAPIUrl as string
const unstructuredAPIKey = nodeData.inputs?.unstructuredAPIKey as string
const strategy = nodeData.inputs?.strategy as UnstructuredLoaderStrategy
const encoding = nodeData.inputs?.encoding as string
const coordinates = nodeData.inputs?.coordinates as boolean
const skipInferTableTypes = nodeData.inputs?.skipInferTableTypes
? JSON.parse(nodeData.inputs?.skipInferTableTypes as string)
: ([] as SkipInferTableTypes[])
const hiResModelName = nodeData.inputs?.hiResModelName as HiResModelName
const includePageBreaks = nodeData.inputs?.includePageBreaks as boolean
const chunkingStrategy = nodeData.inputs?.chunkingStrategy as 'None' | 'by_title'
const metadata = nodeData.inputs?.metadata
const sourceIdKey = (nodeData.inputs?.sourceIdKey as string) || 'source'
const ocrLanguages = nodeData.inputs?.ocrLanguages ? JSON.parse(nodeData.inputs?.ocrLanguages as string) : ([] as string[])
const xmlKeepTags = nodeData.inputs?.xmlKeepTags as boolean
const multiPageSections = nodeData.inputs?.multiPageSections as boolean
const combineUnderNChars = nodeData.inputs?.combineUnderNChars as number
const newAfterNChars = nodeData.inputs?.newAfterNChars as number
const maxCharacters = nodeData.inputs?.maxCharacters as number
const _omitMetadataKeys = nodeData.inputs?.omitMetadataKeys as string
const output = nodeData.outputs?.output as string
const loader = new S3Loader({
bucket: bucketName,
key: keyName,
s3Config,
unstructuredAPIURL: unstructuredAPIUrl,
unstructuredAPIKey: unstructuredAPIKey
})
loader.load = async () => {
const tempDir = fsDefault.mkdtempSync(path.join(os.tmpdir(), 's3fileloader-'))
const filePath = path.join(tempDir, keyName)
try {
const s3Client = new S3Client(s3Config)
const getObjectCommand = new GetObjectCommand({
Bucket: bucketName,
Key: keyName
})
const response = await s3Client.send(getObjectCommand)
const objectData = await new Promise<Buffer>((resolve, reject) => {
const chunks: Buffer[] = []
if (response.Body instanceof Readable) {
response.Body.on('data', (chunk: Buffer) => chunks.push(chunk))
response.Body.on('end', () => resolve(Buffer.concat(chunks)))
response.Body.on('error', reject)
} else {
reject(new Error('Response body is not a readable stream.'))
}
})
fsDefault.mkdirSync(path.dirname(filePath), { recursive: true })
fsDefault.writeFileSync(filePath, objectData)
} catch (e: any) {
throw new Error(`Failed to download file ${keyName} from S3 bucket ${bucketName}: ${e.message}`)
}
try {
const obj: UnstructuredLoaderOptions = {
apiUrl: unstructuredAPIUrl,
strategy,
encoding,
coordinates,
skipInferTableTypes,
hiResModelName,
includePageBreaks,
chunkingStrategy,
ocrLanguages,
xmlKeepTags,
multiPageSections,
combineUnderNChars,
newAfterNChars,
maxCharacters
}
if (unstructuredAPIKey) obj.apiKey = unstructuredAPIKey
const unstructuredLoader = new UnstructuredLoader(filePath, obj)
let docs = await handleDocumentLoaderDocuments(unstructuredLoader)
docs = handleDocumentLoaderMetadata(docs, _omitMetadataKeys, metadata, sourceIdKey)
return handleDocumentLoaderOutput(docs, output)
} catch {
throw new Error(`Failed to load file ${filePath} using unstructured loader.`)
} finally {
fsDefault.rmSync(path.dirname(filePath), { recursive: true })
}
}
return loader.load()
}
private getMimeTypeFromExtension(fileName: string): string {
const extension = path.extname(fileName).toLowerCase()
const mimeTypeMap: { [key: string]: string } = {
'.pdf': 'application/pdf',
'.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'.doc': 'application/msword',
'.xlsx': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
'.xls': 'application/vnd.ms-excel',
'.pptx': 'application/vnd.openxmlformats-officedocument.presentationml.presentation',
'.ppt': 'application/vnd.ms-powerpoint',
'.txt': 'text/plain',
'.csv': 'text/csv',
'.html': 'text/html',
'.htm': 'text/html',
'.json': 'application/json',
'.xml': 'application/xml',
'.md': 'text/markdown'
}
return mimeTypeMap[extension] || 'application/octet-stream'
}
private async processFile(fileInfo: any, buffer: Buffer): Promise<IDocument[]> {
try {
// Handle different file types
if (this.isTextBasedFile(fileInfo.mimeType)) {
// Process text files directly from buffer
const content = buffer.toString('utf-8')
// Create document with metadata
return [
{
pageContent: content,
metadata: {
source: fileInfo.webViewLink,
fileId: fileInfo.key,
fileName: fileInfo.name,
mimeType: fileInfo.mimeType,
size: fileInfo.size,
lastModified: fileInfo.lastModified,
etag: fileInfo.etag,
bucketName: fileInfo.bucketName
}
}
]
} else if (this.isSupportedBinaryFile(fileInfo.mimeType)) {
// Process binary files using loaders
return await this.processBinaryFile(fileInfo, buffer)
} else {
console.warn(`Unsupported file type ${fileInfo.mimeType} for file ${fileInfo.name}`)
return []
}
} catch (error) {
console.warn(`Failed to process file ${fileInfo.name}: ${error.message}`)
return []
}
}
private isTextBasedFile(mimeType: string): boolean {
const textBasedMimeTypes = [
'text/plain',
'text/html',
'text/css',
'text/javascript',
'text/csv',
'text/xml',
'application/json',
'application/xml',
'text/markdown',
'text/x-markdown'
]
return textBasedMimeTypes.includes(mimeType)
}
private isSupportedBinaryFile(mimeType: string): boolean {
const supportedBinaryTypes = [
'application/pdf',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'application/msword',
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
'application/vnd.ms-excel',
'application/vnd.openxmlformats-officedocument.presentationml.presentation',
'application/vnd.ms-powerpoint'
]
return supportedBinaryTypes.includes(mimeType)
}
private async processBinaryFile(fileInfo: any, buffer: Buffer): Promise<IDocument[]> {
let tempFilePath: string | null = null
try {
// Create temporary file
tempFilePath = await this.createTempFile(buffer, fileInfo.name, fileInfo.mimeType)
let docs: IDocument[] = []
const mimeType = fileInfo.mimeType.toLowerCase()
switch (mimeType) {
case 'application/pdf': {
const pdfLoader = new PDFLoader(tempFilePath, {
// @ts-ignore
pdfjs: () => import('pdf-parse/lib/pdf.js/v1.10.100/build/pdf.js')
})
docs = await pdfLoader.load()
break
}
case 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
case 'application/msword': {
const docxLoader = new DocxLoader(tempFilePath)
docs = await docxLoader.load()
break
}
case 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet':
case 'application/vnd.ms-excel': {
const excelLoader = new LoadOfSheet(tempFilePath)
docs = await excelLoader.load()
break
}
case 'application/vnd.openxmlformats-officedocument.presentationml.presentation':
case 'application/vnd.ms-powerpoint': {
const pptxLoader = new PowerpointLoader(tempFilePath)
docs = await pptxLoader.load()
break
}
case 'text/csv': {
const csvLoader = new CSVLoader(tempFilePath)
docs = await csvLoader.load()
break
}
default:
throw new Error(`Unsupported binary file type: ${mimeType}`)
}
// Add S3 metadata to each document
if (docs.length > 0) {
const s3Metadata = {
source: fileInfo.webViewLink,
fileId: fileInfo.key,
fileName: fileInfo.name,
mimeType: fileInfo.mimeType,
size: fileInfo.size,
lastModified: fileInfo.lastModified,
etag: fileInfo.etag,
bucketName: fileInfo.bucketName,
totalPages: docs.length // Total number of pages/sheets in the file
}
return docs.map((doc, index) => ({
...doc,
metadata: {
...doc.metadata, // Keep original loader metadata (page numbers, etc.)
...s3Metadata, // Add S3 metadata
pageIndex: index // Add page/sheet index
}
}))
}
return []
} catch (error) {
throw new Error(`Failed to process binary file: ${error.message}`)
} finally {
// Clean up temporary file
if (tempFilePath && fsDefault.existsSync(tempFilePath)) {
try {
fsDefault.unlinkSync(tempFilePath)
} catch (e) {
console.warn(`Failed to delete temporary file: ${tempFilePath}`)
}
}
}
}
private async createTempFile(buffer: Buffer, fileName: string, mimeType: string): Promise<string> {
// Get appropriate file extension
let extension = path.extname(fileName)
if (!extension) {
const extensionMap: { [key: string]: string } = {
'application/pdf': '.pdf',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document': '.docx',
'application/msword': '.doc',
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': '.xlsx',
'application/vnd.ms-excel': '.xls',
'application/vnd.openxmlformats-officedocument.presentationml.presentation': '.pptx',
'application/vnd.ms-powerpoint': '.ppt',
'text/csv': '.csv'
}
extension = extensionMap[mimeType] || '.tmp'
}
// Create temporary file
const tempDir = os.tmpdir()
const tempFileName = `s3_${Date.now()}_${Math.random().toString(36).substring(7)}${extension}`
const tempFilePath = path.join(tempDir, tempFileName)
fsDefault.writeFileSync(tempFilePath, buffer)
return tempFilePath
}
}
module.exports = { nodeClass: S3_DocumentLoaders }