Flowise/packages/components/nodes/multiagents/Worker/Worker.ts

318 lines
12 KiB
TypeScript

import { flatten } from 'lodash'
import { RunnableSequence, RunnablePassthrough, RunnableConfig } from '@langchain/core/runnables'
import { ChatPromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate } from '@langchain/core/prompts'
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { HumanMessage } from '@langchain/core/messages'
import { formatToOpenAIToolMessages } from 'langchain/agents/format_scratchpad/openai_tools'
import { type ToolsAgentStep } from 'langchain/agents/openai/output_parser'
import { INode, INodeData, INodeParams, IMultiAgentNode, ITeamState, ICommonObject, MessageContentImageUrl } from '../../../src/Interface'
import { ToolCallingAgentOutputParser, AgentExecutor } from '../../../src/agents'
import { StringOutputParser } from '@langchain/core/output_parsers'
import { getInputVariables, handleEscapeCharacters } from '../../../src/utils'
const examplePrompt = 'You are a research assistant who can search for up-to-date info using search engine.'
class Worker_MultiAgents implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
hideOutput: boolean
inputs?: INodeParams[]
badge?: string
constructor() {
this.label = 'Worker'
this.name = 'worker'
this.version = 2.0
this.type = 'Worker'
this.icon = 'worker.svg'
this.category = 'Multi Agents'
this.baseClasses = [this.type]
this.hideOutput = true
this.inputs = [
{
label: 'Worker Name',
name: 'workerName',
type: 'string',
placeholder: 'Worker'
},
{
label: 'Worker Prompt',
name: 'workerPrompt',
type: 'string',
rows: 4,
default: examplePrompt
},
{
label: 'Tools',
name: 'tools',
type: 'Tool',
list: true,
optional: true
},
{
label: 'Supervisor',
name: 'supervisor',
type: 'Supervisor'
},
{
label: 'Tool Calling Chat Model',
name: 'model',
type: 'BaseChatModel',
optional: true,
description: `Only compatible with models that are capable of function calling: ChatOpenAI, ChatMistral, ChatAnthropic, ChatGoogleGenerativeAI, ChatVertexAI, GroqChat. If not specified, supervisor's model will be used`
},
{
label: 'Format Prompt Values',
name: 'promptValues',
type: 'json',
optional: true,
acceptVariable: true,
list: true
},
{
label: 'Max Iterations',
name: 'maxIterations',
type: 'number',
optional: true
}
]
}
async init(nodeData: INodeData, input: string, options: ICommonObject): Promise<any> {
let tools = nodeData.inputs?.tools
tools = flatten(tools)
let workerPrompt = nodeData.inputs?.workerPrompt as string
const workerLabel = nodeData.inputs?.workerName as string
const supervisor = nodeData.inputs?.supervisor as IMultiAgentNode
const maxIterations = nodeData.inputs?.maxIterations as string
const model = nodeData.inputs?.model as BaseChatModel
const promptValuesStr = nodeData.inputs?.promptValues
if (!workerLabel) throw new Error('Worker name is required!')
const workerName = workerLabel.toLowerCase().replace(/\s/g, '_').trim()
if (!workerPrompt) throw new Error('Worker prompt is required!')
let workerInputVariablesValues: ICommonObject = {}
if (promptValuesStr) {
try {
workerInputVariablesValues = typeof promptValuesStr === 'object' ? promptValuesStr : JSON.parse(promptValuesStr)
} catch (exception) {
throw new Error("Invalid JSON in the Worker's Prompt Input Values: " + exception)
}
}
workerInputVariablesValues = handleEscapeCharacters(workerInputVariablesValues, true)
const llm = model || (supervisor.llm as BaseChatModel)
const multiModalMessageContent = supervisor?.multiModalMessageContent || []
const abortControllerSignal = options.signal as AbortController
const workerInputVariables = getInputVariables(workerPrompt)
if (!workerInputVariables.every((element) => Object.keys(workerInputVariablesValues).includes(element))) {
throw new Error('Worker input variables values are not provided!')
}
const agent = await createAgent(
llm,
[...tools],
workerPrompt,
multiModalMessageContent,
workerInputVariablesValues,
maxIterations,
{
sessionId: options.sessionId,
chatId: options.chatId,
input
}
)
const workerNode = async (state: ITeamState, config: RunnableConfig) =>
await agentNode(
{
state,
agent: agent,
name: workerName,
nodeId: nodeData.id,
abortControllerSignal
},
config
)
const returnOutput: IMultiAgentNode = {
node: workerNode,
name: workerName,
label: workerLabel,
type: 'worker',
workerPrompt,
workerInputVariables,
parentSupervisorName: supervisor.name ?? 'supervisor'
}
return returnOutput
}
}
async function createAgent(
llm: BaseChatModel,
tools: any[],
systemPrompt: string,
multiModalMessageContent: MessageContentImageUrl[],
workerInputVariablesValues: ICommonObject,
maxIterations?: string,
flowObj?: { sessionId?: string; chatId?: string; input?: string }
): Promise<AgentExecutor | RunnableSequence> {
if (tools.length) {
const combinedPrompt =
systemPrompt +
'\nWork autonomously according to your specialty, using the tools available to you.' +
' Do not ask for clarification.' +
' Your other team members (and other teams) will collaborate with you with their own specialties.' +
' You are chosen for a reason! You are one of the following team members: {team_members}.'
//const toolNames = tools.length ? tools.map((t) => t.name).join(', ') : ''
const prompt = ChatPromptTemplate.fromMessages([
['system', combinedPrompt],
new MessagesPlaceholder('messages'),
new MessagesPlaceholder('agent_scratchpad')
/* Gettind rid of this for now because other LLMs dont support system message at later stage
[
'system',
[
'Supervisor instructions: {instructions}\n' + tools.length
? `Remember, you individually can only use these tools: ${toolNames}`
: '' + '\n\nEnd if you have already completed the requested task. Communicate the work completed.'
].join('\n')
]*/
])
if (multiModalMessageContent.length) {
const msg = HumanMessagePromptTemplate.fromTemplate([...multiModalMessageContent])
prompt.promptMessages.splice(1, 0, msg)
}
if (llm.bindTools === undefined) {
throw new Error(`This agent only compatible with function calling models.`)
}
const modelWithTools = llm.bindTools(tools)
let agent
if (!workerInputVariablesValues || !Object.keys(workerInputVariablesValues).length) {
agent = RunnableSequence.from([
RunnablePassthrough.assign({
//@ts-ignore
agent_scratchpad: (input: { steps: ToolsAgentStep[] }) => formatToOpenAIToolMessages(input.steps)
}),
prompt,
modelWithTools,
new ToolCallingAgentOutputParser()
])
} else {
agent = RunnableSequence.from([
RunnablePassthrough.assign({
//@ts-ignore
agent_scratchpad: (input: { steps: ToolsAgentStep[] }) => formatToOpenAIToolMessages(input.steps)
}),
RunnablePassthrough.assign(transformObjectPropertyToFunction(workerInputVariablesValues)),
prompt,
modelWithTools,
new ToolCallingAgentOutputParser()
])
}
const executor = AgentExecutor.fromAgentAndTools({
agent,
tools,
sessionId: flowObj?.sessionId,
chatId: flowObj?.chatId,
input: flowObj?.input,
verbose: process.env.DEBUG === 'true' ? true : false,
maxIterations: maxIterations ? parseFloat(maxIterations) : undefined
})
return executor
} else {
const combinedPrompt =
systemPrompt +
'\nWork autonomously according to your specialty, using the tools available to you.' +
' Do not ask for clarification.' +
' Your other team members (and other teams) will collaborate with you with their own specialties.' +
' You are chosen for a reason! You are one of the following team members: {team_members}.'
const prompt = ChatPromptTemplate.fromMessages([['system', combinedPrompt], new MessagesPlaceholder('messages')])
if (multiModalMessageContent.length) {
const msg = HumanMessagePromptTemplate.fromTemplate([...multiModalMessageContent])
prompt.promptMessages.splice(1, 0, msg)
}
let conversationChain
if (!workerInputVariablesValues || !Object.keys(workerInputVariablesValues).length) {
conversationChain = RunnableSequence.from([prompt, llm, new StringOutputParser()])
} else {
conversationChain = RunnableSequence.from([
RunnablePassthrough.assign(transformObjectPropertyToFunction(workerInputVariablesValues)),
prompt,
llm,
new StringOutputParser()
])
}
return conversationChain
}
}
async function agentNode(
{
state,
agent,
name,
nodeId,
abortControllerSignal
}: { state: ITeamState; agent: AgentExecutor | RunnableSequence; name: string; nodeId: string; abortControllerSignal: AbortController },
config: RunnableConfig
) {
try {
if (abortControllerSignal.signal.aborted) {
throw new Error('Aborted!')
}
const result = await agent.invoke({ ...state, signal: abortControllerSignal.signal }, config)
const additional_kwargs: ICommonObject = { nodeId, type: 'worker' }
if (result.usedTools) {
additional_kwargs.usedTools = result.usedTools
}
if (result.sourceDocuments) {
additional_kwargs.sourceDocuments = result.sourceDocuments
}
return {
messages: [
new HumanMessage({
content: typeof result === 'string' ? result : result.output,
name,
additional_kwargs: Object.keys(additional_kwargs).length ? additional_kwargs : undefined
})
]
}
} catch (error) {
throw new Error('Aborted!')
}
}
const transformObjectPropertyToFunction = (obj: ICommonObject) => {
const transformedObject: ICommonObject = {}
for (const key in obj) {
transformedObject[key] = () => obj[key]
}
return transformedObject
}
module.exports = { nodeClass: Worker_MultiAgents }