Flowise/packages/components/nodes/embeddings/HuggingFaceInferenceEmbedding/core.ts

56 lines
1.8 KiB
TypeScript

import { HfInference } from '@huggingface/inference'
import { Embeddings, EmbeddingsParams } from 'langchain/embeddings/base'
import { getEnvironmentVariable } from '../../../src/utils'
export interface HuggingFaceInferenceEmbeddingsParams extends EmbeddingsParams {
apiKey?: string
model?: string
endpoint?: string
}
export class HuggingFaceInferenceEmbeddings extends Embeddings implements HuggingFaceInferenceEmbeddingsParams {
apiKey?: string
endpoint?: string
model: string
client: HfInference
constructor(fields?: HuggingFaceInferenceEmbeddingsParams) {
super(fields ?? {})
this.model = fields?.model ?? 'sentence-transformers/distilbert-base-nli-mean-tokens'
this.apiKey = fields?.apiKey ?? getEnvironmentVariable('HUGGINGFACEHUB_API_KEY')
this.endpoint = fields?.endpoint ?? ''
this.client = new HfInference(this.apiKey)
if (this.endpoint) this.client.endpoint(this.endpoint)
}
async _embed(texts: string[]): Promise<number[][]> {
// replace newlines, which can negatively affect performance.
const clean = texts.map((text) => text.replace(/\n/g, ' '))
const hf = new HfInference(this.apiKey)
const obj: any = {
inputs: clean
}
if (this.endpoint) {
hf.endpoint(this.endpoint)
} else {
obj.model = this.model
}
const res = await this.caller.callWithOptions({}, hf.featureExtraction.bind(hf), obj)
return res as number[][]
}
async embedQuery(document: string): Promise<number[]> {
const res = await this._embed([document])
return res[0]
}
async embedDocuments(documents: string[]): Promise<number[][]> {
return this._embed(documents)
}
}